精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系xOy中,點M的坐標為(3,﹣2),線段AB的位置如圖所示,其中點A的坐標為(7,3),點B的坐標為(1,4).

(1)將線段AB平移可以得到線段MN,其中點A的對應點為M(3,﹣2),點B的對應點為N,則點N的坐標為   

(2)在(1)的條件下,若點C的坐標為(4,0),請在圖中描出點N并順次連接BC,CM,MN,NB,然后求出四邊形BCMN的面積S.

【答案】(1)(﹣3,﹣1)(2)22

【解析】

(1)由點M及其對應點A的坐標得出平移方向和距離,據此可得點N的坐標;

(2)根據題意畫出圖形,利用割補法求解可得.

(1)由點A(7,3)的對應點是M(3,﹣2)知,由A先向左平移4個單位、再向下平移5個單位,可得到點M,

點B(1,4)的對應點N的坐標為(﹣3,﹣1),

故答案為:(﹣3,﹣1).

(2)如圖,描出點N并畫出四邊形BCMN,

S=×4×5+×6×1+×1×2+2×1+×3×4

=10+3+1+2+6

=22.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點C,且AB+BC=BE,則∠B的度數是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某自動化車間計劃生產480個零件,當生產任務完成一半時,停止生產進行自動化程序軟件升級,用時20分鐘,恢復生產后工作效率比原來提高了,結果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產多少個零件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,點A(-a,a)(a>0),點B(-a-4,a+3),C為該直角坐標系內的一點,連結AB,OC.若ABOCAB=OC,則點C的坐標為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠設門市部專賣某產品,該產品每件成本40元,從開業(yè)一段時間的每天銷售統(tǒng)計中,隨機抽取一部分情況如下表所示:

每件銷售價(元)

50

60

70

75

80

85

每天售出件數

300

240

180

150

120

90

假設當天定的售價是不變的,且每天銷售情況均服從這種規(guī)律.
(1)觀察這些統(tǒng)計數據,找出每天售出件數y與每件售價x(元)之間的函數關系,并寫出該函數關系式.
(2)門市部原設有兩名營業(yè)員,但當銷售量較大時,在每天售出量超過168件時,則必須增派一名營業(yè)員才能保證營業(yè)有序進行,設營業(yè)員每人每天工資為40元.求每件產品應定價多少元,才能使每天門市部純利潤最大(純利潤指的是收入總價款扣除成本及營業(yè)員工資后的余額,其它開支不計)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠設門市部專賣某產品,該產品每件成本40元,從開業(yè)一段時間的每天銷售統(tǒng)計中,隨機抽取一部分情況如下表所示:

每件銷售價(元)

50

60

70

75

80

85

每天售出件數

300

240

180

150

120

90

假設當天定的售價是不變的,且每天銷售情況均服從這種規(guī)律.
(1)觀察這些統(tǒng)計數據,找出每天售出件數y與每件售價x(元)之間的函數關系,并寫出該函數關系式.
(2)門市部原設有兩名營業(yè)員,但當銷售量較大時,在每天售出量超過168件時,則必須增派一名營業(yè)員才能保證營業(yè)有序進行,設營業(yè)員每人每天工資為40元.求每件產品應定價多少元,才能使每天門市部純利潤最大(純利潤指的是收入總價款扣除成本及營業(yè)員工資后的余額,其它開支不計)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現代互聯網技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展,據調查,某家快遞公司,今年三月份與五月份完成投遞的快件總件數分別是5萬件和萬件,現假定該公司每月投遞的快件總件數的增長率相同.

求該公司投遞快件總件數的月平均增長率;

如果平均每人每月可投遞快遞萬件,那么該公司現有的16名快遞投遞員能否完成今年6月份的快遞投遞任務?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠BAD=CAE=90°,AB=AD,AE=AC,AFCB,垂足為F.

(1)求證:△ABC≌△ADE;(圖1)

(2)求∠FAE的度數;(圖1)

(3)如圖2,延長CFG點,使BF=GF,連接AG.求證:CD=CG;并猜想CD2BF+DE的關系.

查看答案和解析>>

同步練習冊答案