【題目】如圖,拋物線y= x2 x﹣2與x軸交于A、B兩點,點P(m,n)(n<0)為拋物線上一個動點,當∠APB為鈍角時,則m的取值范圍(
A.﹣1<m<0
B.﹣1<m<0或3<m<4
C.0<m<3或m>4
D.m<﹣1或0<m<3

【答案】B
【解析】解:令y=0得: x2 x﹣2=0, 解得:x=﹣1或x=4,
則點A(﹣1,0)、B(4,0),
以AB為直徑作圓M,與y軸交于點P.則拋物線在圓內(nèi)的部分如圖所示,能使∠APB為鈍角,

∴M( ,0),⊙M的半徑=
在Rt△OMP中,∴OP= =2.
∴P(0,﹣2),
由拋物線的對稱性可知,P′(3,﹣2),
∴當﹣1<m<0或3<m<4時,∠APB為鈍角,
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解拋物線與坐標軸的交點的相關(guān)知識,掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個菱形兩條對角線長的和是10,菱形的面積是12,則菱形的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?/span>62兩種型號客車作為交通工具.

下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:

型號

載客量

租金單價

30人/輛

380元/輛

20人/輛

280元/輛

注:載客量指的是每輛客車最多可載該校師生的人數(shù).設(shè)學(xué)校租用型號客車輛,租車總費用為.

1)求的函數(shù)解析式,請直接寫出的取值范圍;

2)若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最。孔钍〉目傎M用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某月的月歷上圈出了相鄰的三個數(shù)a、b、c,并求出了它們的和為39,這三個數(shù)在月歷中的排布不可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCD中,AB//DC,∠DAB=90°,AD=2DC=4,AB=6.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C﹣D﹣A向點A運動.當點M到達點B時,兩點同時停止運動.過點M作直線l//AD,與線段CD的交點為E,與折線A﹣C﹣B的交點為Q.點M運動的時間為t(秒).

(1)當t=0.5時,求線段QM的長;
(2)當0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當t>2時,連接PQ交線段AC于點R.請?zhí)骄? 是否為定值,若是,試求這個定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意設(shè)未知數(shù),并列出方程(不必求解).

(1)有兩個工程隊,甲隊人數(shù)30名,乙隊人數(shù)10名,問怎樣調(diào)整兩隊的人數(shù),才能使甲隊的人數(shù)是乙隊人數(shù)的7倍.

(2)有一個班的同學(xué)準備去劃船,租了若干條船,他們計算了一下,如果比原計劃多租1條船,那么正好每條船坐6人;如果比原計劃少租1條船,那么正好每條船坐9人.問這個班共有多少名同學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料善于思考的小明在解方程組,采用了一種“整體代換”的解法,解法如下:

解:將方程②8x+20y+2y=10,變形為 2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,則 y=﹣1;把 y=﹣1 代入①得,x=4,所以方程組的解為: 請你解決以下問題:

(1)試用小明的“整體代換”的方法解方程組

(2)已知 x、y、z,滿足試求 z 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC的邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設(shè)BD=x,△BDP的面積為y,則y與x函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案