【題目】在正方形 ABCD 中, P 為 AB 的中點(diǎn),的延長線于點(diǎn) E ,連接 AE 、 BE , 交 DP 于點(diǎn) F ,連接 BF 、FC ,下列結(jié)論:① ;② FB AB ;③ ;④ FC EF . 其中正確的是( )
A.①②④B.①③④C.①②③D.①②③④
【答案】D
【解析】
根據(jù)已知和正方形的性質(zhì)推出∠EAB=∠DAF,∠EBA=∠ADP,AB=AD,證△ABE≌△ADF即可;取EF的中點(diǎn)M,連接AM,推出AM=MF=EM=DF,證∠AMB=∠FMB,BM=BM,AM=MF,推出△ABM≌△FBM即可;求出∠FDC=∠EBF,推出△BEF≌△DFC即可.
解:∵正方形ABCD,BE⊥ED,EA⊥FA,
∴AB=AD=CD=BC,∠BAD=∠EAF=90°=∠BEF,
∵∠APD=∠EPB,
∴∠EAB=∠DAF,∠EBA=∠ADP,
∵AB=AD,
∴△ABE≌△ADF,∴①正確;
∴AE=AF,BE=DF,
∴∠AEF=∠AFE=45°,
取EF的中點(diǎn)M,連接AM,
∴AM⊥EF,AM=EM=FM,
∴BE∥AM,
∵AP=BP,
∴AM=BE=DF,
∴∠EMB=∠EBM=45°,
∴∠AMB=90°+45°=135°=∠FMB,
∵BM=BM,AM=MF,
∴△ABM≌△FBM,
∴AB=BF,∴②正確;
∴∠BAM=∠BFM,
∵∠BEF=90°,AM⊥EF,
∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,
∴∠APF=∠EBF,
∵AB∥CD,
∴∠APD=∠FDC,
∴∠EBF=∠FDC,
∵BE=DF,BF=CD,
∴△BEF≌△DFC,
∴CF=EF,∠DFC=∠FEB=90°,
∴③正確;④正確;
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】微信“搶紅包”游戲現(xiàn)在受到越來越多的人喜歡,其中有一種玩法“拼手氣紅包”,用戶設(shè)置好總金額以及紅包個(gè)數(shù)后,可以隨機(jī)生成金額不等的紅包,現(xiàn)有一用戶發(fā)了三個(gè)“拼手氣紅包”,總金額為5元,隨機(jī)被甲、乙、丙三人搶到。
(1)下列事件中,確定事件是__________。
①甲、乙兩人搶到的紅包金額之和比丙搶到的紅包金額多;
②甲搶到的金額為0.5元的紅包;
③乙搶到金額為6元的紅包。
(2)隨機(jī)紅包分為大、中、小三個(gè)金額,用畫樹狀圖或列表的方法求出連抽兩次最大金額的紅包概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā),甲車勻速前往B地,到達(dá)B地立即以另一速度按原路勻速返回到A地;乙車勻速前往A地,設(shè)甲、乙兩車距A地的路程為y(千米),甲車行駛的時(shí)間為x(時(shí)),y與x之間的函數(shù)圖象如圖所示
(1)求甲車從A地到達(dá)B地的行駛時(shí)間;
(2)求甲車返回時(shí)y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)求乙車到達(dá)A地時(shí)甲車距A地的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C處有一些蜂蜜,此時(shí)一只螞蟻正好也在杯外壁,離杯上沿4cm與蜂蜜相對的點(diǎn)A處,那么螞蟻要吃到甜甜的蜂蜜所爬行的最短距離是( )
A.13B.14C.15D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為,陰影三角形部分的面積從左向右依次記為、、、、,則的值為______用含n的代數(shù)式表示,n為正整數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連結(jié)AG、CF.
(1)求證:①△ABG≌△AFG; ②BG=GC;
(2)求△FGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是正方形邊上一點(diǎn),連接,作于點(diǎn),手點(diǎn),連接.
(1)求證:;
(2已知,四邊形的面積為24,求的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是⊙的直徑,弦 于點(diǎn),過點(diǎn)的切線交的延長線于點(diǎn),連接DF.
(1)求證:DF是⊙的切線;
(2)連接,若=30°,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com