【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了多少名學(xué)生?在扇形統(tǒng)計圖中,表示" "的扇形圓心角的度數(shù)是多少;

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用 “微信”進行溝通的學(xué)生大約有多少名?

(4)某天甲、乙兩名同學(xué)都想從微信"""、電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

【答案】1100;108°;(2)詳見解析;(3600人;(4

【解析】

1)利用喜歡“電話”溝通的人數(shù)除以其所占調(diào)查總?cè)藬?shù)的百分率即可求出調(diào)查總?cè)藬?shù),然后求出喜歡“QQ 溝通的人數(shù)占調(diào)查總?cè)藬?shù)的百分率,再乘360°即可求出結(jié)論;

2)用調(diào)查總?cè)藬?shù)×喜歡“短信”溝通的人數(shù)所占百分率即可求出喜歡“短信”溝通的人數(shù),然后用調(diào)查總?cè)藬?shù)減去其余“電話”、“短信”、“QQ”和“其它”溝通的人數(shù)即可求出喜歡用“微信”溝通的人數(shù),最后補全條形統(tǒng)計圖即可;

3)先求出喜歡用“微信”溝通的人數(shù)占調(diào)查總?cè)藬?shù)的百分率,再乘1500即可;

4)根據(jù)題意,畫出樹狀圖,然后根據(jù)概率公式計算即可.

解:(1)調(diào)查總?cè)藬?shù)為20÷20%=100

表示" "的扇形圓心角的度數(shù)是30÷100×360°=108°

(2)喜歡用“短信”溝通的人數(shù)為:100×5%=5人,

喜歡用“微信”溝通的人數(shù)為:100-20-5-30-5=40人,

補充條形統(tǒng)計圖,如圖所示:

(3)喜歡用“微信”溝通所占百分比為:

∴該校共有1500名學(xué)生,估計該校最喜歡用微信進行溝通的學(xué)生有:

人.

答:該校最喜歡用微信進行溝通的學(xué)生有600人.

(4)列出樹狀圖,如圖所示,

共有9種等可能的結(jié)果,其中兩人恰好選中同一種溝通方式共有3種情況,

所以甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”“一般”“較強”“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖

根據(jù)以上信息,解答下列問題:

1)該校有1200名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學(xué)生約有多少名?

2)請直接將條形統(tǒng)計圖補充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全國人民每天都很關(guān)心新型冠狀病毒感染肺炎的全國疫情和湖北疫情,下面是202027日小明在網(wǎng)上看到的202026日有關(guān)全國和武漢的疫情統(tǒng)計圖表:

1全國疫情趨勢圖

2新增確診病例趨勢圖

根據(jù)統(tǒng)計圖表提供的信息,下列推斷不合理的是(

A.從圖1可得出在26日的全國確診病例達到3萬多,是非典確診病例(共5327例)的若干倍,說明新型冠狀病毒比非典病毒傳染性強.

B.從圖2可得出在26日新增病例出現(xiàn)下降,說明此時全國的累計確診病例開始下降,肺炎疫情得到控制,政府和人民的防疫工作有了顯著成效

C.從圖226日新增病例出現(xiàn)下降,可以估計26日后全國新型冠狀病毒肺炎累計確診病例的單日增長率會低于10%

D.從表1可看出確診病例較多的省市大部分都是在湖北周圍,很大原因是由于攜帶病毒的流動人口造成的,所以控制疫情的有效手段是在家隔離,同時也可以推斷在新疆和甘肅等西北地區(qū)疫情相對緩和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在反比例函數(shù)的圖象上,連接,作,且,線段軸于點,若的面積為,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點是對角線,的交點,,.點為線段上一點,且滿足,過點于點,交于點

1)若,求;

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)與y軸交于點C,與x軸交于A,B兩點,其中點B的坐標為B4,0),拋物線的對稱軸交x軸于點D,CEAB,并與拋物線的對稱軸交于點E.現(xiàn)有下列結(jié)論:①a0;②b0;③4a+2b+c0;④AD+CE4.其中所有正確結(jié)論的序號是( 。

A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象經(jīng)過點C(0,-2),頂點D的坐標為(1,),與軸交于AB兩點.

(1)求拋物線的解析式.

(2)連接AC,E為直線AC上一點,當△AOC∽△AEB時,求點E的坐標和的值.

3)點F0,)是軸上一動點,當為何值時,的值最小.并求出這個最小值.

4)點C關(guān)于軸的對稱點為H,當取最小值時,在拋物線的對稱軸上是否存在點Q,使△QHF是直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,CO上一點,連接AC.過點BO的切線,交AC的延長線于點D,在AD上取一點E,使AEAB,連接BE,交O于點F

請補全圖形并解決下面的問題:

1)求證:∠BAE2EBD;

2)如果AB5sinEBD.求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和點O

1)把△ABC繞點O順時針旋轉(zhuǎn)90°得到△A1B1C1,在網(wǎng)格中畫出△A1B1C1;

2)用直尺和圓規(guī)作△ABC的邊AB,AC的垂直平分線,并標出兩條垂直平分線的交點P(要求保留作圖痕跡,不寫作法)

查看答案和解析>>

同步練習(xí)冊答案