【題目】閱讀探索:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”(完成下列空格)
(1)當(dāng)已知矩形A的邊長分別為6和1時,小亮同學(xué)是這樣研究的:
設(shè)所求矩形的兩邊分別是x和y,由題意得方程組:,消去y化簡得:2x2﹣7x+6=0,
∵△=49﹣48>0,
∴x1=_____,x2=_______,
∴滿足要求的矩形B存在.
(2)如果已知矩形A的邊長分別為2和1,請你仿照小亮的方法研究是否存在滿足要求的矩形B.
(3)如果矩形A的邊長為m和n,請你研究滿足什么條件時,矩形B存在?
【答案】(1)2,;(2)不存在,理由見解析;(3)(m+n)2-8mn≥0,理由見解析.
【解析】
試題(1)直接利用求根公式計算即可;
(2)參照(1)中的解法解題即可;
(3)解法同上,利用根的判別式列不等關(guān)系可求m,n滿足的條件.
試題解析:(1)由上可知(x-2)(2x-3)=0,
∴x1=2,x2=.
(2)不存在,理由如下:
設(shè)所求矩形的兩邊分別是x和y,由題意,得,
消去y化簡,得2x2-3x+2=0.
∵△=9-16<0,∴不存在矩形B.
(3)(m+n)2-8mn≥0,理由如下
設(shè)所求矩形的兩邊分別是x和y,由題意,得,
消去y化簡,得2x2-(m+n)x+mn=0.
△=(m+n)2-8mn≥0,即(m+n)2-8mn≥0時,滿足要求的矩形B存在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB與△OCD是以點(diǎn)O為位似中心的位似圖形,相似比為3:4,∠OCD=90°,∠AOB=60°,若點(diǎn)B的坐標(biāo)是(6,0),則點(diǎn)C的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將圓形轉(zhuǎn)盤三等分,分別標(biāo)上1、2、3三個數(shù)字,代表雞、猴、鼠三種生肖郵票(每種郵票各兩枚,雞年郵票面值“0.80元”,其它郵票都是面值“1.20元”),轉(zhuǎn)動轉(zhuǎn)盤后,指針每落在某個數(shù)字所在扇形一次就表示獲得該種郵票一枚.
(1)任意轉(zhuǎn)動轉(zhuǎn)盤一次,獲得雞年郵票的概率是 ;
(2)任意轉(zhuǎn)動轉(zhuǎn)盤兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,動點(diǎn)P從點(diǎn)A開始沿AB運(yùn)動,速度為2cm/s;動點(diǎn)Q從點(diǎn)B開始沿BC運(yùn)動,速度為4cm/s.設(shè)P、Q兩點(diǎn)同時運(yùn)動,運(yùn)動時間為ts(0<t<4),當(dāng)△QBP與△ABC相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD 中,點(diǎn)E,O,F分別是邊AB,AC,AD的中點(diǎn),連接CE、CF、OE、OF.
(1)求證:△BCE≌△DCF;
(2)當(dāng)AB與BC滿足什么條件時,四邊形AEOF正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的弦,點(diǎn)P是優(yōu)弧AB上的一個動點(diǎn),連接AP,過點(diǎn)A作AP的垂線,交PB的延長線于點(diǎn)C.
(1)如圖1,AC與⊙O相交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交PC于點(diǎn)E,若DE∥AB,求證:PA=PB;
(2)如圖2,已知⊙O的半徑為2,AB=2.
①當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動時,∠C的度數(shù)為 °;
②當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動時,△ABP的面積隨之變化,求△ABP面積的最大值;
③當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動時,△ABC的面積隨之變化,△ABC的面積的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(diǎn)(不與A、E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ,以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正確的是( )
A.①②③④B.②③④⑤C.①③④⑤D.①②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段,為的中點(diǎn), 為上一點(diǎn),連接交于點(diǎn).
(1)如圖,當(dāng)OA=OB且為中點(diǎn)時,求的值;
(2)如圖,當(dāng)OA=OB,=時,求tan∠.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com