【題目】如圖,在菱形ABCD中,∠A=60°,AD=4,點F是AB的中點,過點F作FE⊥AD,垂足為E,將△AEF沿點A到點B的方向平移,得到△A'E'F',設(shè)點P、P'分別是EF、E'F'的中點,當點A'與點B重合時,四邊形PP'CD的面積為( )
A. 7B. 6C. 8D. 8﹣4
【答案】A
【解析】
如圖,連接BD,DF,DF交PP′于H.首先證明四邊形PP′CD是平行四邊形,再證明DF⊥PP′,求出FH即可解決問題.
解:如圖,連接BD,DF,DF交PP′于H.
由題意PP′=AA′=AB=CD,PP′∥AA′∥CD,
∴四邊形PP′CD是平行四邊形,
∵四邊形ABCD是菱形,∠A=60°,
∴△ABD是等邊三角形,
∵AF=FB,
∴DF⊥AB,DF⊥PP′,
在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=2,
∴DF=2
∴AE=1,EF=,
∴PE=PF=,
在Rt△PHF中,∵∠FPH=30°,PF=,
∴HF= ,
∴DH=DF﹣FH
∴平行四邊形PP'CD的面積=×4=7.
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在三角形ABC中,∠ACB=90°,AC=6,BC=8,點D為邊BC的中點,射線DE⊥BC交AB于點E.點P從點D出發(fā),沿射線DE以每秒1個單位長度的速度運動.以PD為斜邊,在射線DE的右側(cè)作等腰直角△DPQ.設(shè)點P的運動時間為t(秒).
(1)用含t的代數(shù)式表示線段EP的長.
(2)求點Q落在邊AC上時t的值.
(3)當點Q在△ABC內(nèi)部時,設(shè)△PDQ和△ABC重疊部分圖形的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個結(jié)論:①abc<0;②b2-4ac>0;③a+b+c>0;④a-b+c>0.其中正確的結(jié)論有( )
A. 1個
B. 2個
C. 3個
D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,AD與BC相交于點E,且BE=CE.
(1)請判斷AD與BC的位置關(guān)系,并說明理由;
(2)若BC=6,ED=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四張大小、形狀都相同的卡片上分別寫有數(shù)字1,2,3,4,把它們放入到不透明的盒子中搖勻.
(1)從中隨機抽出1張卡片,求抽出的卡片上的數(shù)字恰好是偶數(shù)的概率;
(2)從中隨機抽出2張卡片,求抽出的2張卡片上的數(shù)字恰好是相鄰兩整數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)過點B作BC⊥x軸,垂足為C,連接AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王亮同學善于改進學習方法,他發(fā)現(xiàn)對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學習.假設(shè)他用于解題的時間x(單位:分鐘)與學習收益量y的關(guān)系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學習收益量z的關(guān)系為z=,且用于回顧反思的時間不超過用于解題的時間.
(1)求王亮解題的學習收益量y與用于解題的時間x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學習收益總量最大?(學習收益總量=解題的學習收益量+回顧反思的學習收益量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B兩點的坐標分別為A(0,2),B(2,0),直線AB與反比例函數(shù)y=的圖象交于點C和點D(﹣1,a).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求∠ACO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1、x2是關(guān)于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個實數(shù)根,使得(3x1-x2)(x1-3x2)=-80成立,求其實數(shù)a的可能值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com