【題目】如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若1=2,3=4,則A=F,請(qǐng)說明理由.

解:∵∠1=2(已知),2=DGF(

∴∠1=DGF

BDCE(

∴∠3+C=180(

∵∠3=4(已知)

∴∠4+C=180

________________ (同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠A=F(

【答案】(對(duì)頂角相等)、(同位角相等,兩直線平行)、(兩直線平行,同旁內(nèi)角互補(bǔ))、DF、AC、(兩直線平行,內(nèi)錯(cuò)角相等)

【解析】試題分析:根據(jù)平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系,平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系,分別分析得出即可.

試題解析:∵∠1=∠2(已知)

∠2=∠DGF(對(duì)頂角相等),

∴∠1=∠DGF,

∴BD∥CE,(同位角相等,兩直線平行),

∴∠3+∠C=180°,(兩直線平行,同旁內(nèi)角互補(bǔ)),

∵∠3=∠4(已知)

∴∠4+∠C=180°

∴DF∥AC(同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠A=∠F(兩直線平行,內(nèi)錯(cuò)角相等).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店三月份銷售鉛筆100支,四、五兩個(gè)月銷售量連續(xù)增長(zhǎng).若月平均增長(zhǎng)率為x,則該文具店五月份銷售鉛筆的支數(shù)是( )
A.100(1+x)
B.100(1+x)2
C.100(1+x2
D.100(1+2x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是假命題的是( 。

A. 同角(或等角)的余角相等

B. 三角形的任意兩邊之和大于第三邊

C. 三角形的內(nèi)角和為180°

D. 兩直線平行,同旁內(nèi)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,點(diǎn)A,B,C均在格點(diǎn)上.

(1)請(qǐng)值接寫出點(diǎn)A,BC的坐標(biāo).

(2)若平移線段AB,使B移動(dòng)到C的位置,請(qǐng)?jiān)趫D中畫出A移動(dòng)后的位置D,依次連接B,C,D,A,并求出四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.a2+a3=a5
B.a2a3=a6
C.a3÷a2=a
D.(a23=a8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一根長(zhǎng)20cm的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)各做成一個(gè)正方形,設(shè)其中一段鐵絲長(zhǎng)為4x cm,兩個(gè)正方形的面積和為y cm2

1)求yx的函數(shù)關(guān)系式;

2)要使這兩個(gè)正方形面積之和為17cm2,那么這根鐵絲剪成兩段后的長(zhǎng)度分別是多少?

3)要使這兩個(gè)正方形面積之和最小,則這根鐵絲剪成兩段后的長(zhǎng)度各是多少?這兩個(gè)正方形面積之和最小為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一直角三角形的三邊分別為2,3,x,那么以x為邊長(zhǎng)的正方形的面積為( )

A. 13 B. 5 C. 4 D. 135

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=mx2+2mx+cm≠0),與y軸交于點(diǎn)C0,﹣4),與x軸交于點(diǎn)A﹣40)和點(diǎn)B

1)求該拋物線的解析式;

2)若P是線段OC上的動(dòng)點(diǎn),過點(diǎn)PPEOA,交AC于點(diǎn)E,連接AP,當(dāng)AEP的面積最大時(shí),求此時(shí)點(diǎn)P的坐標(biāo);

3)點(diǎn)D為該拋物線的頂點(diǎn),QABD的外接圓,求證Q與直線y=2相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知MNPQ,BMN上,CPQ上,AB的左側(cè),DC的右側(cè),DE平分∠ADC,BE平分∠ABC,直線DEBE交于點(diǎn)E,∠CBN=100°

(1)若∠ADQ=130°,求∠BED的度數(shù);

(2)將線段AD沿DC方向平移,使得點(diǎn)D在點(diǎn)C的左側(cè),其他條件不變,若∠ADQ=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案