【題目】如圖1,在平面直角坐標系中,直線與坐標軸交于A,B兩點,以AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC,點C為直角頂點,連接OC.
(1)直接寫出= ;
(2)請你過點C作CE⊥y軸于E點,試探究OB+OA與CE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點M為AB的中點,點N為OC的中點,求MN的值;
(4)如圖2,將線段AB繞點B沿順時針方向旋轉(zhuǎn)至BD,且OD⊥AD,延長DO交直線于點P,求點P的坐標.
【答案】(1) 4;(2)OB+OA=2CE;見解析;(3)MN=;(4)P(,).
【解析】
(1)令x=0,求出y的值,令y=0,求出x的值,即可得出OA,OB的長,根據(jù)三角形面積公式即可求出結(jié)果;
(2)過點C作CF⊥x軸,垂足為點F,易證△CEB≌△CFA與四邊形CEOF是正方形,從而得AF=BE,CE=BE=OF,由OB=OE-BE,AO=OF+AF可得結(jié)論;
(3)求出C點坐標,利用中點坐標公式求出點M,N的坐標,進而用兩點間的距離公式求解即可得出結(jié)論;
(4)先判斷出點B是AQ的中點,進而求出Q的坐標,即可求出DP的解析式,聯(lián)立成方程組求解即可得出結(jié)論.
(1)∵直線y=-x+2交坐標軸于A,B兩點,
令x=0,則y=2,令y=0,則x=4,
∴BO=2,AO=4,
∴=;
(2)作CF⊥x軸于F,作CE⊥y軸于E,如圖,
∴∠BFC=∠AEC=90°
∵∠EOF=90°,
∴四邊形OECF是矩形,
∴CF=OE,CE=OF,∠ECF=90°,
∵∠ACB=90°
∴∠BCF=∠ACE,
∵BC=AC,
∴△CFB≌△CEA,
∴CF=CE,AF=BE,
∴四邊形OECF是正方形,
∴OE=OF=CE=CF,
∴OB=OE-BE,OA=OF+AF,
∴OB+OA=OE+OF=2CE;
(3)由(2)得CE=3,
∴OE=3,
∴OF=3,
∴C(3,3);
∵M是線段AB的中點,而A(4,0),B(0,2),
∴M(2,1),
同理:N(,),
∴MN=;
(3)如圖②延長AB,DP相交于Q,
由旋轉(zhuǎn)知,BD=AB,
∴∠BAD=∠BDA,
∵AD⊥DP,
∴∠ADP=90°,
∴∠BDA+∠BDQ=90°,∠BAD+∠AQD=90°,
∴∠AQD=∠BDQ,∴BD=BQ,
∴BQ=AB,
∴點B是AQ的中點,
∵A(4,0),B(0,2),
∴Q(-4,4),
∴直線DP的解析式為y=-x①,
∵直線DO交直線y=x+5②于P點,
聯(lián)立①②解得,x=-,y=,
∴P(-,).
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上有三點分別表示數(shù),且滿足.兩只電子螞蟻甲、乙分別從兩點同時出發(fā)相向而行,若甲的速度為個單位/秒,乙的速度為個單位/秒.
(1)求的值并在數(shù)軸上標出三點.
(2)問甲、乙在數(shù)軸上的哪個點相遇?
(3)問多少秒后,甲到的距離為個單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P是菱形ABCD的對角線AC上的一個動點,已知AB=1,∠ADC=120°, 點M,N分別是AB,BC邊上的中點,則△MPN的周長最小值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴重洪澇災害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災物資200噸和300噸的消息后,決定調(diào)運物資支援災區(qū). 已知C市有救災物資240噸,D市有救災物資260噸,現(xiàn)將這些救災物資全部調(diào)往A、B兩市. 已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用分別為每噸15元和30元,設從C市運往B市的救災物資為x噸.
(1)請?zhí)顚懴卤恚?/span>
(2)設C、D兩市的總運費為W元,求W與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從C市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少n元(n>0),其余路線運費不變,若C、D兩市的總運費的最小值不小于10080元,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國移動公司開設適合普通用戶的兩種通訊業(yè)務分別是:“全球通”用戶先繳元月租,然后每分鐘通話費用元;“神州行”用戶不用繳納月租費,每分鐘通話元.(通話均指撥打本地電話)
設一個月內(nèi)通話時間約為分鐘(且為整數(shù)),求這兩種用戶每月需繳的費用分別是多少元?(用含的式子表示)
若張老師一個月通話約分鐘,請你給他提個建議,應選擇哪種移動通訊方式合算一些?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,請求出熱氣球離地面的高度.
(結(jié)果保留整數(shù),參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(,2)B(1,﹣1).
(1)方程kx+b﹣=0的解為 ,不等式的解集是 ;(請直接寫出答案)
(2)點P在x軸上,如果S△ABP=3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人參加射箭比賽,兩人各射了5箭,他們的成績(單位:環(huán))統(tǒng)計如下表.
第1箭 | 第2箭 | 第3箭 | 第4箭 | 第5箭 | |
甲成績 | 9 | 4 | 7 | 4 | 6 |
乙成績 | 7 | 5 | 6 | 5 | 7 |
(1)分別計算甲、乙兩人射箭比賽的平均成績;
(2)你認為哪個人的射箭成績比較穩(wěn)定?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料并解決有關(guān)問題.
我們知道,|x|=.現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時,可令x+1=0和x-2=0,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點值).在實數(shù)范圍內(nèi),零點值x=-1和x=2可將全體實數(shù)分成不重復且不遺漏的如下3種情況:
(1)x<-1;
(2)-1≤x<2;
(3)x≥2.
從而化簡代數(shù)式|x+1|+|x-2|可分以下3種情況:
(1)當x<-1時,原式=-(x+1)-(x-2)=-2x+1;
(2)當-1≤x<2時,原式=x+1-(x-2)=3;
(3)當x≥2時,原式=x+1+x-2=2x-1.
綜上討論,原式=
通過以上閱讀,請你解決以下問題:
(1)分別求出|x+3|和|x-5|的零點值;
(2)化簡|x+3|+|x-5|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com