【題目】如圖,矩形ABCD的頂點(diǎn)A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,交BC于點(diǎn)E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
【答案】3
【解析】
由tan∠AOD=,可設(shè)AD=3a、OA=4a,在表示出點(diǎn)D、E的坐標(biāo),由反比例函數(shù)經(jīng)過點(diǎn)D、E列出關(guān)于a的方程,解之求得a的值即可得出答案.
解:∵tan∠AOD==,
∴設(shè)AD=3a、OA=4a,
則BC=AD=3a,點(diǎn)D坐標(biāo)為(4a,3a),
∵CE=2BE,
∴BE=BC=a,
∵AB=4,
∴點(diǎn)E(4+4a,a),
∵反比例函數(shù) 經(jīng)過點(diǎn)D、E,
∴k=12a2=(4+4a)a,
解得:a= 或a=0(舍),
∴D(2, )
則k=2×=3.
故答案為3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊分別相切于點(diǎn)則四邊形叫做的外切四邊形.
(1)如圖2,試探究圓外切四邊形的兩組對邊與之間的數(shù)量關(guān)系,猜想: (橫線上填“>”,“<”或“=”);
(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);
(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論: ;
(4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F.
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸,軸分別相交于點(diǎn).點(diǎn)是軸上動點(diǎn),點(diǎn)從點(diǎn)出發(fā)向原點(diǎn)O運(yùn)動,點(diǎn)在點(diǎn)右側(cè),.過點(diǎn)作于點(diǎn)將沿直線翻折,得到連接.設(shè)與重合部分面積為求:
(1)求線段的長(用含的代數(shù)式表示);
(2)求關(guān)于的函數(shù)解析式,并直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是弦,點(diǎn)在圓外,于,交于點(diǎn),連接,,,.
(1)求證:是的切線;
(2)求證:;
(3)設(shè)的面積為,的面積為,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)問題解決往往經(jīng)歷發(fā)現(xiàn)猜想——探索歸納——問題解決的過程,下面結(jié)合一道幾何題來體驗(yàn)一下.
(發(fā)現(xiàn)猜想)(1)如圖①,已知∠AOB=70°,∠AOD=100°,OC為∠BOD的角平分線,則∠AOC的度數(shù)為 ;.
(探索歸納)(2)如圖①,∠AOB=m,∠AOD=n,OC為∠BOD的角平分線. 猜想∠AOC的度數(shù)(用含m、n的代數(shù)式表示),并說明理由.
(問題解決)(3)如圖②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射線OB繞點(diǎn)O以每秒20°逆時(shí)針旋轉(zhuǎn),射線OC繞點(diǎn)O以每秒10°順時(shí)針旋轉(zhuǎn),射線OD繞點(diǎn)O每秒30°順時(shí)針旋轉(zhuǎn),三條射線同時(shí)旋轉(zhuǎn),當(dāng)一條射線與直線OA重合時(shí),三條射線同時(shí)停止運(yùn)動. 運(yùn)動幾秒時(shí),其中一條射線是另外兩條射線夾角的角平分線?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是放置在水平面上的臺燈,圖②是其側(cè)面示意圖(臺燈底座高度忽略不計(jì)),其中燈臂AC=44cm,燈罩CD=32cm,燈臂與底座構(gòu)成的∠CAB=60°.CD可以繞點(diǎn)C上下調(diào)節(jié)一定的角度.使用發(fā)現(xiàn):當(dāng)CD與水平線所成的角為30°時(shí),臺燈光線最佳.現(xiàn)測得點(diǎn)D到桌面的距離為54.06cm.請通過計(jì)算說明此時(shí)臺燈光線是否為最佳?(參考數(shù)據(jù):取1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=90°,將扇形OAB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到扇形BDC,若點(diǎn)O剛好落在弧AB上的點(diǎn)D處,則的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(,)和直線y=kx+b,則點(diǎn)P到直線y=kx+b的距離證明可用公式d= 計(jì)算.
例如:求點(diǎn)P(﹣1,2)到直線y=3x+7的距離.
解:因?yàn)橹本y=3x+7,其中k=3,b=7.
所以點(diǎn)P(﹣1,2)到直線y=3x+7的距離為:d== = =.
根據(jù)以上材料,解答下列問題:
(1)求點(diǎn)P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r為2,判斷⊙Q與直線y=x+9的位置關(guān)系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com