【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且EDF=45°.將DAE繞點D逆時針旋轉90°,得到DCM.

1)求證:EF=FM

2)當AE=1時,求EF的長.

【答案】(1)∵△DAE逆時針旋轉90°得到DCM

DE=DM EDM=90°

∴∠EDF + FDM=90°

∵∠EDF=45°

∴∠FDM =EDM=45°

DF= DF

∴△DEF≌△DMF

EF=MF

(2) 設EF=x AE=CM=1

BF=BM-MF=BM-EF=4-x

EB=2

在RtEBF中,由勾股定理得

解之,得 

【解析】(1)由折疊可得DE=DM,EDM為直角,可得出EDF+MDF=90°,由EDF=45°,得到MDF為45°,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF與三角形MDF全等,由全等三角形的對應邊相等可得出EF=MF;

(2)由第一問的全等得到AE=CM=1,正方形的邊長為3,用AB-AE求出EB的長,再由BC+CM求出BM的長,設EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,即為EF的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,點C是O上一點,點D在BA的延長線上,CD與O交于另一點E,DE=OB=2,D=20°,則弧BC的長度為( 。

A. π B. π C. π D. π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.

(1)如圖①,若∠P=35°,求∠ABP的度數(shù);

(2)如圖②,若DAP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:△ABC是圓的內(nèi)接三角形,BAC與ABC的角平分線AE、BE相交于點E,延長AE交圓于點D,連接BD、DC,且∠BCA=60°.

(1)求證:BED為等邊三角形;

(2)若∠ADC=30°,⊙O的半徑為2,求BD長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學從如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,觀察得出了下面五條信息:

①c<0;②abc>0;③2a﹣b=0;④a+b+c>0;⑤當﹣3<x<1時,y<0.

你認為其中正確信息的個數(shù)有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一種市場均衡模型是用一次函數(shù)和二次函數(shù)來刻化的:根據(jù)市場調(diào)查,某種商品的市場需求量y1(噸)與單價x(百元)之間的關系可看作是二次函數(shù)y1=4﹣x2,該商品的市場供應量y2(噸)與單價x(百元)之間的關系可看作是一次函數(shù)y2=4x﹣1.

(1)當需求量等于供應量時,市場達到均衡.此時的單價x(百元)稱為均衡價格,需求量(供應量)稱為均衡數(shù)量.求所述市場均衡模型的均衡價格和均衡數(shù)量.

(2)當該商品單價為50元時,此時市場供應量與需求量相差多少噸?

(3)根據(jù)以上信息分析,當該商品供不應求供大于求時,該商品單價分別會在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從城出發(fā)勻速行駛至城.在整個行駛過程中,甲、乙兩車離城的距離(千米)與甲車行駛的時間(小時)之間的函數(shù)關系如圖所示.則下列結論:

兩城相距千米;

②乙車比甲車晚出發(fā)小時,卻早到小時;

③乙車出發(fā)后小時追上甲車;

④當甲、乙兩車相距千米時,

其中正確的結論有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:把一張給定大小的矩形卡片ABCD放在寬度為10mm的橫格紙中,恰好四個頂點都在橫格線上,已知α25°,求長方形卡片的周長。(精確到1mm,參考數(shù)據(jù): sin25°≈0,cos25°≈0.9tan25°≈0.5.

查看答案和解析>>

同步練習冊答案