【題目】如圖,在平面直角坐標系中,直線l與x軸相交于點M(3,0),與y軸相交于點N(0,﹣1),反比例函數(shù)y= (x>0)的圖象經(jīng)過線段MN的中點A.
(1)求直線l和反比例函數(shù)的解析式;
(2)在函數(shù)y= (x>0)的圖象上取不同于點A的一點B,作BC⊥x軸于點C,連接OB交直線l于點P,若△ONP的面積是△OBC的面積的3倍,求點P的坐標.

【答案】
(1)解:設直線l的解析式為y=mx+n(m≠0),

將(3,0)、(0,﹣1)代入y=mx+n,

,解得: ,

∴直線l的解析式為y= x﹣1.

∵點A為線段MN的中點,

∴點A的坐標為( ,﹣ ).

將A( ,﹣ )代入y=

=﹣ ,解得:k=﹣ ,

∴反比例函數(shù)解析式為y=﹣


(2)解:∵SOBC= |k|= ,

∴SONP=3SOBC=

∵點N(0,﹣1),

∴ON=1.

設點P的坐標為(a, a﹣1)(0<a<3),

∴SONP= ONa= a= ,

∴a= , a﹣1=﹣

∴點P的坐標為( ,﹣


【解析】(1)根據(jù)點M、N的坐標利用待定系數(shù)法即可求出直線l的解析式,根據(jù)點A為線段MN的中點即可得出點A的坐標,根據(jù)點A的坐標利用待定系數(shù)法即可求出反比例函數(shù)解析式;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義即可求出SOBC的面積,設點P的坐標為(a, a﹣1)(0<a<3),根據(jù)三角形的面積公式結(jié)合SONP的面積即可求出a值,進而即可得出點P的坐標.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某超市地下停車場入口的設計圖,請根據(jù)圖中數(shù)據(jù)計算CE的長度.(結(jié)果保留小數(shù)點后兩位;參考數(shù)據(jù):sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中.
(1)以圖中的點O為位似中心,在網(wǎng)格中畫出△ABC的位似圖形△A1B1C1 , 使△A1B1C1與△ABC的位似比為2:1;
(2)若△A1B1C1的面積為S,則△ABC的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄂州市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.
(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍.
(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式.
(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D是AC邊上一點,且AD=2DC,E是AB邊上一點,ED與BC的延長線相交于點F,且BC=CF,G是EF的中點,連接CG,若CG=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為直線x=1,若其與x軸交于點為A(3,0),則由圖象可知,方程ax2+bx+c的另一個解是(
A.﹣1
B.﹣2
C.﹣1.5
D.﹣2.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知銳角△ABC中,邊BC長為12,高AD長為8.
(1)如圖,矩形EFGH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K.
①求 的值;
②設EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關系式,并求S的最大值;
(2)若AB=AC,正方形PQMN的兩個頂點在△ABC一邊上,另兩個頂點分別在△ABC的另兩邊上,直接寫出正方形PQMN的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點H在平行四邊形ABCD的邊DC延長線上,連結(jié)AH分別交BC、BD于點E,F(xiàn).求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:
(1)2x2﹣x=1
(2)x2+4x+2=0.

查看答案和解析>>

同步練習冊答案