【題目】已知如圖,在△ABC中,AB=AC,點(diǎn)D是線段BC上一個(gè)動(dòng)點(diǎn),以AD為腰在線段AD的右側(cè)作△ADE,且AD=AE。
(1)如圖①,當(dāng)∠BAC=∠DAE=90°時(shí),試判斷線段BD和CE有什么關(guān)系,并給出證明:
(2)在(1)的條件下,若BC=4.試判斷四邊形ADCE的面積是否發(fā)生變化,若不變,求出四邊形ADCE的面積;若變化,請說明理由;
(3)如圖②,若∠BAC=∠DAE=120°,BC=4,試探索△DCE的面積是否存在最大值,若存在,求出此時(shí)∠DEC的度數(shù),若不存在,請說明理由。
【答案】(1)BD=CE,證明見解析;(2)不變,4;(3)存在,60°.
【解析】
(1)根據(jù)同角的余角相等,可得∠BAD=∠CAE,運(yùn)用“SAS”證明△ABD≌△ACE,根據(jù)全等三角形性質(zhì)得出對(duì)應(yīng)邊相等,即可得到線段CE、BD之間的關(guān)系;
(2)由(1)得 ,所以 ,可得出四邊形ADCE的面積不發(fā)生變化,根據(jù)等腰直角三角形的性質(zhì)得出斜邊BC上的高,即可求出面積;
(3)由 , 可得的值最小時(shí)△DCE的面積存在最大值,由垂線段最短可得AD⊥BC時(shí)AD=AE的值最小,則的值最小,根據(jù)全等三角形的性質(zhì)和等腰三角形的性質(zhì)即可求∠DEC的度數(shù).
(1)BD=CE.
證明:∵∠BAC=∠DAE=90°,
∴∠BAD+∠DAC=∠CAE+∠DAC,
∴∠BAD=∠CAE,
在△DAB與△EAC中,
∴△DAB≌△EAC(SAS),
∴BD=CE;
(2)∵△DAB≌△EAC
∴
∵
∴ ,即四邊形ADCE的面積不發(fā)生變化;
∵∠BAC=90°,AB=AC,BC=4
∴Rt△ABC斜邊上的高=2
∴
(3)由(2)得
∵
∴的值最小時(shí)△DCE的面積存在最大值,
由垂線段最短可得AD⊥BC時(shí)AD=AE的值最小,則的值最小,如下圖,
∵∠BAC=∠DAE=120°,AB=AC,AD=AE
∴∠B=∠ACB=∠AED=30°, ∠BAD+∠DAC=∠CAE+∠DAC,
∴∠BAD=∠CAE,
在△DAB與△EAC中,
∴△DAB≌△EAC(SAS),
∵△DAB≌△EAC,AD⊥BC
∴∠AEC=∠ADB=90°
∴ ∠DEC=90°-30°=60°.
故答案為:(1)BD=CE,證明見解析;(2)不變,4;(3)存在,60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(齊齊哈爾中考)如圖所示,在四邊形ABCD中.
(1)畫出四邊形A1B1C1D1,使四邊形A1B1C1D1與四邊形ABCD關(guān)于直線MN成軸對(duì)稱;
(2)畫出四邊形A2B2C2D2,使四邊形A2B2C2D2與四邊形ABCD關(guān)于點(diǎn)O中心對(duì)稱.
(3)四邊形A1B1C1D1與四邊形A2B2C2D2是否對(duì)稱,若對(duì)稱請?jiān)趫D中畫出對(duì)稱軸或?qū)ΨQ中心.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組積的科學(xué)家素養(yǎng)競賽中,每班參加比賽的人數(shù)相同,成績分為A、B、C、D四個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為90分、80分、70 分、60 分,學(xué)校將八年級(jí)(1)班和(2) 班的成績整理并繪制成如下的統(tǒng)計(jì)圖:
請你根據(jù)以上提供的信息解答下列問題:
(1) 此次競賽中二 班成績在70分以上(包括70分) 的人數(shù)有多少人?
(2) 補(bǔ)全下表中空缺的三個(gè)統(tǒng)計(jì)量:
平均數(shù)/ 分 | 中位數(shù)/ 分 | 眾數(shù)/ 分 | |
一班 | 77.6 | 80 | _____________ |
二班 | _____________ | ______________ | 90 |
(3) 請根據(jù)上述圖表對(duì)這次競賽成績進(jìn)行分析,寫出兩個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點(diǎn)E,FA⊥AE,交CB延長線于點(diǎn)F,則EF的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=90°,D是直線AB上的點(diǎn),AD=BC.
(1)如圖1,過點(diǎn)A作AF⊥AB,并截取AF=BD,連接DC、DF、CF,判斷△CDF的形狀并證明;
(2)如圖2,E是直線BC上一點(diǎn),且CE=BD,直線AE、CD相交于點(diǎn)P,∠APD的度數(shù)是一個(gè)固定的值嗎?若是,請求出它的度數(shù);若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D,E分別在AC,AB上,下列條件中,不能使BD=CE的是( )
A. BD,CE為AC,AB上的高
B. BD,CE都為△ABC的角平分線
C. ∠ABD=∠ABC,∠ACE=∠ACB
D. ∠ABD=∠BCE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)折矩形紙片ABCD,使AB與DC重合,得到折痕MN,將紙片展平;再一次折疊,使點(diǎn)D落到MN上的點(diǎn)F處,折痕AP交MN于E;延長PF交AB于G.求證:
(1)△AFG≌△AFP;
(2)△APG為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點(diǎn)A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點(diǎn)A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第4次作圖后,點(diǎn)B4到ON的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年某省將地處A、B兩地的兩所大學(xué)合并成了一所綜合性大學(xué),為了方便A、B兩地師生的交往,學(xué)校準(zhǔn)備在相距2km的A、B兩地之間修筑一條筆直公路(即圖中的線段AB),經(jīng)測量,在A地的北偏東60°方向、B地的西偏北45°方向C處有一個(gè)半徑為0.7km的公園,問計(jì)劃修筑的這條公路會(huì)不會(huì)穿過公園?為什么?(≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com