【題目】計(jì)算:﹣4﹣(﹣2)= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C坐標(biāo)分別是(8,0),(0,4),反比例函數(shù)y=(x>0)的圖象過對(duì)角線的交點(diǎn)P并且與AB、BC分別交于D、E兩點(diǎn),連接OD、OE、DE,則△ODE的面積為( )
A. 14 B. 12 C. 15 D. 8
查看答案和解析>>
科目:
來源: 題型:【題目】如圖,在△ABC中,∠B=22.5°,AB的垂直平分線交AB于點(diǎn)Q,交BC于點(diǎn)P,PE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,AD交PE于點(diǎn)F.求證:DF=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形兩邊長分別為6cm、2cm,則這個(gè)三角形的周長是( )
A. 14cm B. 10cm C. 14cm或10cm D. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在□ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個(gè)條件,這個(gè)條件可以是( )
①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE。
A. ①或② B. ②或③ C. ③或④ D. ①或③或④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】劉衛(wèi)同學(xué)在一次課外活動(dòng)中,用硬紙片做了兩個(gè)直角三角形,見圖①、②.圖①中,∠B=90°,∠A=30°,BC=6cm;圖②中,∠D=90°,∠E=45°,DE=4 cm.圖③是劉衛(wèi)同學(xué)所做的一個(gè)實(shí)驗(yàn):他將△DEF的直角邊DE與△ABC的斜邊AC重合在一起,并將△DEF沿AC方向移動(dòng).在移動(dòng)過程中,D、E兩點(diǎn)始終在AC邊上(移動(dòng)開始時(shí)點(diǎn)D與點(diǎn)A重合).
(1)在△DEF沿AC方向移動(dòng)的過程中,劉衛(wèi)同學(xué)發(fā)現(xiàn):F、C兩點(diǎn)間的距離逐漸 .
(2)劉衛(wèi)同學(xué)經(jīng)過進(jìn)一步地研究,編制了如下問題:
問題①:當(dāng)△DEF移動(dòng)至什么位置,即AD的長為多少時(shí),F(xiàn)、C的連線與AB平行?
問題②:當(dāng)△DEF移動(dòng)至什么位置,即AD的長為多少時(shí),以線段AD、FC、BC的長度為三邊長的三角形是直角三角形?
問題③:在△DEF的移動(dòng)過程中,是否存在某個(gè)位置,使得∠FCD=15°?如果存在,
求出AD的長度;如果不存在,請(qǐng)說明理由.
請(qǐng)你分別完成上述三個(gè)問題的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),如圖①,另有一點(diǎn)從點(diǎn)出發(fā),沿著運(yùn)動(dòng),到點(diǎn)停止.
()當(dāng)在上時(shí), __________.
()點(diǎn)在運(yùn)動(dòng)過程中,直接寫出可以和形成等腰三角形的點(diǎn)的坐標(biāo).
()將圖①中的長方形在坐標(biāo)平面內(nèi)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),如圖②,求出此時(shí)點(diǎn)、、的坐標(biāo)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com