如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,DC=數(shù)學公式,點P在BC邊上運動(與B、C不重合),設PC=x,四邊形ABPD的面積為y.
(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)若以點D為圓心,數(shù)學公式為半徑作⊙D;以點P為圓心,以PC長為半徑作⊙P,當x為何值時,⊙D與⊙P相切?并求出這兩圓相切時四邊形ABPD的面積.

解:作DE⊥BC于E,
∴∠BED=90°,
∵AB⊥BC,
∴∠B=90°
∵AD∥BC,
∴∠A=90°,
∴四邊形ABED是矩形.
∴AD=BE,AB=DE,
∵AD=1,AB=2,
∴BE=1,DE=2,
在Rt△DEC中,由勾股定理,得
EC===2,
∴BC=3,
∵PC=x,
∴BP=3-x,
y=×2×(1+3-x)
=-x+4.
∵P點與B、C不重合,
∴0<x<3.

(2)解:當圓P與圓D外切時,如圖所示:

過D作DE⊥BC,交BC于點E,可得∠DEP=90°,
∵直角梯形ABCD中,AD∥BC,AB⊥BC,
∴∠A=∠B=90°,
∴四邊形ABED為矩形,又AD=1,AB=2,
∴AB=DE=2,AD=BE=1,
在Rt△CED中,DC=2,DE=2,
根據(jù)勾股定理得:EC==2,
∴EP=EC-PC=2-x,
∵圓D與圓P外切,圓D半徑為,圓P半徑為x,
∴DP=+x,
在Rt△DEP中,根據(jù)勾股定理得:DP2=DE2+EP2
即(+x)2=22+(2-x)2,
解得:x=;
即x=時⊙D與⊙P外切.
此時S四邊形ABPD=-+4=
當圓P與圓D內(nèi)切時,如圖所示:

過D作DE⊥BC,交BC于點E,可得∠DEP=90°,
∵直角梯形ABCD中,AD∥BC,AB⊥BC,
∴∠A=∠B=90°,
∴四邊形ABED為矩形,又AD=1,AB=2,
∴AB=DE=2,AD=BE=1,
在Rt△CED中,DC=2
2
,DE=2,
根據(jù)勾股定理得:EC==2,
∴EP=EC-PC=2-x,
∵圓D與圓P內(nèi)切,圓D半徑為,圓P半徑為x,
∴DP=x-,
在Rt△DEP中,根據(jù)勾股定理得:DP2=DE2+EP2,
即(x-2=22+(2-x)2
解得:x=,
綜上,當x=時,圓D與圓P相切.
即x=時⊙D與⊙P內(nèi)切.
此時S四邊形ABPD=-+4=
分析:(1)如圖作DE⊥BC于E,由矩形的性質(zhì)可以得出DE=AB,由勾股定理可以得出EC的值,進而表示出EP.從而求出BP,再根據(jù)梯形的面積公式可以表示出梯形的面積就可以表示出y與x之間的函數(shù)的關系式.由點P不與B、C重合,從而可以得出x的范圍.
(2)設PC=x時,⊙D與⊙P外切或內(nèi)切時,分別分析求出x的值,代入(1)的解析式就可以求出四邊形ABPD的面積.
點評:本題主要考查了直角梯形的性質(zhì),函數(shù)自變量的取值范圍,相切兩圓的性質(zhì),梯形的面積及勾股定理的運用,題目具有綜合性,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數(shù)關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案