分析 (1)根據(jù)題中給出的例子把原式進(jìn)行化簡即可;
(2)把各式的分母有理化,找出規(guī)律即可得出結(jié)論.
解答 解:(1)$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$=$\sqrt{5}$-$\sqrt{3}$;
$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\frac{5-3}{\sqrt{5}+\sqrt{3}}$=$\frac{{(\sqrt{5})}^{2}-{(\sqrt{3})}^{2}}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$.
(2)原式=$\frac{\sqrt{3}-1}{(\sqrt{3}+1)(\sqrt{3}-1)}$+$\frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$+$\frac{\sqrt{7}-\sqrt{5}}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})}$+…+$\frac{\sqrt{2n+1}-\sqrt{2n-1}}{(\sqrt{2n+1}+\sqrt{2n-1})(\sqrt{2n+1}-\sqrt{2n-1})}$
=$\frac{\sqrt{3}-1}{2}$+$\frac{\sqrt{5}-\sqrt{3}}{2}$+$\frac{\sqrt{7}-\sqrt{5}}{2}$+…+$\frac{\sqrt{2n+1}-\sqrt{2n-1}}{2}$
=$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+$\sqrt{7}$-$\sqrt{5}$+…+$\sqrt{2n+1}$-$\sqrt{2n-1}$)
=$\frac{1}{2}$($\sqrt{2n+1}$-1).
點(diǎn)評(píng) 本題考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一項(xiàng))或與原分母組成平方差公式是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓柱全面積與底面半徑r成正比 | |
B. | 圓柱上、下底面積之和與底面半徑r成正比 | |
C. | 圓柱側(cè)面積與底面的半徑r成正比 | |
D. | 圓柱側(cè)面積與底面積的半徑r2成正比 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com