【題目】一個盒子里有完全相同的三個小球,球上分別標有數字﹣2,1,4.隨機摸出一個小球(不放回),其數字為p,再隨機摸出另一個小球其數字記為q,則滿足關于x的方程x2+px+q=0有實數根的概率是( )
A.
B.
C.
D.
【答案】D
【解析】解:列表如下:
﹣2 | 1 | 4 | |
﹣2 | ﹣﹣﹣ | (1,﹣2) | (4,﹣2) |
1 | (﹣2,1) | ﹣﹣﹣ | (4,1) |
4 | (﹣2,4) | (1,4) | ﹣﹣﹣ |
所有等可能的情況有6種,其中滿足關于x的方程x2+px+q=0有實數根,即滿足p2﹣4q≥0的情況有4種,
則P= = .
故選:D
【考點精析】通過靈活運用求根公式和列表法與樹狀圖法,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數根2、當△=0時,一元二次方程有2個相同的實數根3、當△<0時,一元二次方程沒有實數根;當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率即可以解答此題.
科目:初中數學 來源: 題型:
【題目】已知數軸上有A,B,C三個點,分別表示有理數﹣24,﹣10,10,動點P從A出發(fā),以每秒1個單位的速度向終點C移動,設移動時間為t秒.
(1)用含t的代數式表示P到點A和點C的距離:
PA=________,PC=________;
(2)當點P運動到B點時,點Q從A點出發(fā),以每秒3個單位的速度向C點運動,Q點到達C點后,再立即以同樣的速度返回,運動到終點A.在點Q開始運動后,P,Q兩點之間的距離能否為2個單位?如果能,請求出此時點P表示的數;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四張背面完全相同的紙牌A、B、C、D中,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張(不放回),再從余下的3張紙牌中摸出一張.
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現的結果(紙牌可用A、B、C、D表示);
(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖中的AB所在的直線上建一圖書室,本社區(qū)有兩所學校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.Okm,試問:圖書室E應該建在距點A多少km處,才能使它到兩所學校的距離相等?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2﹣(a﹣1)x+a﹣2,其中a是常數.
(1)求證:不論a為何值,該二次函數的圖象與x軸一定有公共點;
(2)當a=4時,該二次函數的圖象頂點為A,與x軸交于B,D兩點,與y軸交于C點,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與x軸的交點坐標為(2,0),則下列說法:
①y隨x的增大而減小;②b>0;③關于x的方程kx+b=0的解為x=2;④不等式kx+b>0的解集是x>2.
其中說法正確的有_________(把你認為說法正確的序號都填上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段AB上有兩點C、D,且AC=BD,M、N分別是線段AC 、AD的中點,若AB=a cm ,AC=BD=b cm,且a,b滿足(a-9)2+|b-7 |=0.
(1)求AB ,AC的長度;
(2)求線段MN的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,CD為⊙O的直徑,點B在⊙O上,連接BC、BD,過點B的切線AE與CD的延長線交于點A,OE∥BD,交BC于點F,交AE于點E.
(1)求證:△BEF∽△DBC.;
(2)若⊙O的半徑為3,∠C=32°,求BE的長.(精確到0.01)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com