【題目】如圖,數(shù)軸上有兩個點,為原點,,點所表示的數(shù)為.
⑴ ;
⑵求點所表示的數(shù);
⑶動點分別自兩點同時出發(fā),均以每秒2個單位長度的速度沿數(shù)軸向左運動,點為線段的中點,點為線段的中點,在運動過程中,線段的長度是否為定值?若是,請求出線段的長度;若不是,請說明理由.
【答案】(1) 4;(2)-8;(3)EF長度不變,EF=2,證明見解析
【解析】
(1)根據(jù)線段的和差得到AB=4,
(2)由AB=4得到AC=24,即可得出:OC=24-16=8.于是得到點C所表示的數(shù)為-8;
(3)分五種情況:設(shè)運動時間為t,用含t的式子表示出AP、BQ、PC、 CQ,根據(jù)線段中點的定義得到 畫出圖形,計算EF,于是得到結(jié)論.
解: (1)∵ OA=16,點B所表示的數(shù)為20,
∴OB=20,
∴AB=OB-OA=20-16=4,
故答案為:4
(2)∵AB=4,AC=6AB.
∴AC=24,
∴OC=24- 16=8,
∴點C所表示的數(shù)為-8;
(3)EF長度不變,EF=2,理由如下:
設(shè)運動時間為t,
當 時,點P,Q在點C的右側(cè),則AP=BQ=2t,
∵AC=24,BC=28,
∴PC=24-2t, CQ=28- 2t.
∵點E為線段CP的中點,點F為線段CQ的中點,
∴
∴EF=CF-CE=2:
當t=12時,C、P重合,此時PC=0, CQ=28-24=4.
∵點F為線段CQ的中點,
∴
∴
當12<t<14時,點P,Q在點C的左右,PC=2t-24, CQ=28-2t,
∵點E為線段CP的中點,點F為線段CQ的中點,
∴
∴EF=CE+CF=2,
當t=14時,C、Q重合,此時PC=4, CQ=0
∵點E為線段CP的中點,
∴
∴
當t> 14時,點P、Q在點C的左側(cè),PC=2t-24, CQ=2t-28,
∴
∴EF=CE-CF=2.
綜上所述,EF長度不變,EF=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B,E,C,F(xiàn)在同一條直線上,AB=DE,∠B=∠DEF.要使△ABC≌△DEF,則需要再添加的一個條件是_______.(寫出一個即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=x的圖象與函數(shù)y=(x>0)的圖象相交于點P(2,m).
(1)求m,k的值;
(2)直線y=4與函數(shù)y=x的圖象相交于點A,與函數(shù)y=(x>0)的圖象相交于點B,求線段AB長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=5cm,BC=12cm.動點P從A點出發(fā)沿A→C的路徑向終點C運動;動點Q從B點出發(fā)沿B→C→A路徑向終點A運動.點P和點Q分別以每秒1cm和3cm的運動速度同時開始運動,其中一點到達終點時另一點也停止運動,在某時刻,分別過點P和Q作PE⊥MN于E,QF⊥MN于F.則點P運動時間為_____秒時,△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
治理楊絮一一您選哪一項?(單選)
A.減少楊樹新增面積,控制楊樹每年的栽種量
B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹
C.選育無絮楊品種,并推廣種植
D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮
E.其他
根據(jù)以上統(tǒng)計圖,解答下列問題:
(1)本次接受調(diào)查的市民共有 人;
(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是 ;
(3)請補全條形統(tǒng)計圖;
(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連結(jié)BD,BE.以下四個結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC其中結(jié)論正確的個數(shù)有( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖∠ABC=∠ADC=90°,M,N分別是AC、BD的中點.
(1)求證:MN⊥BD.
(2)若∠BAD=45°,連接MB、MD,判斷△MBD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD;
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com