【題目】如圖,在矩形ABCD中,AB=3,BC=4,P是對(duì)角線AC上的動(dòng)點(diǎn),連接DP,將直線DP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)使∠DPG=DAC,且過(guò)DDGPG,連接CG,則CG最小值為( )

A. B. C. D.

【答案】D

【解析】

如圖,作DHACH,連接HG延長(zhǎng)HGCDF,作HECDH.證明ADP∽△DHG,推出∠DHG=∠DAP=定值,推出點(diǎn)G在射線HF上運(yùn)動(dòng),推出當(dāng)CGHE時(shí),CG的值最小,想辦法求出CG即可.

如圖,作DHACH,連接HG延長(zhǎng)HGCDF,作HECDH

DGPG,DHAC

∴∠DGP=∠DHA,

∵∠DPG=∠DAH

∴△ADH∽△PDG,

,∠ADH=∠PDG,

∴∠ADP=∠HDG,

∴△ADP∽△DHG,

∴∠DHG=∠DAP=定值,

∴點(diǎn)G在射線HF上運(yùn)動(dòng),

∴當(dāng)CGHE時(shí),CG的值最小,

∵四邊形ABCD是矩形,

∴∠ADC90°,

∴∠ADH+HDF90°

∵∠DAH+ADH90°,

∴∠HDF=∠DAH=∠DHF,

FDFH

∵∠FCH+CDH90°,∠FHC+FHD90°,

∴∠FHC=∠FCH,

FHFCDF3,

RtADC中,∵∠ADC90°,AD4,CD3,

AC5DH,

CH

EH,

∵∠CFG=∠HFE,∠CGF=∠HEF90°,CFHF

∴△CGF≌△HEFAAS),

CGHE,

CG的最小值為,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)AB的坐標(biāo)分別為(-2,3)和(1,3),拋物線y=ax2+bx+ca0)的 頂點(diǎn)在線段AB上運(yùn)動(dòng)時(shí),形狀保持不變,且與x軸交于C,D兩點(diǎn)(CD的左側(cè)),給出下列結(jié)論:①c3;②當(dāng)x<-3時(shí),yx的增大而增大;③若點(diǎn)D的橫坐標(biāo)最大值為5,則點(diǎn)C的橫坐標(biāo)最小值為-5;④當(dāng)四邊形ACDB為平行四邊形時(shí),a.其中正確的是(

A. ②④ B. ②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等邊ABC的邊長(zhǎng)為4cm,動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿射線BC方向移動(dòng),以AD為邊作等邊ADE

1)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,點(diǎn)E能否移動(dòng)至直線AB上?若能,求出此時(shí)BD的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;

2)如圖2,在點(diǎn)D從點(diǎn)B開(kāi)始移動(dòng)至點(diǎn)C的過(guò)程中,以等邊ADE的邊ADDE為邊作ADEF

ADEF的面積是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;

若點(diǎn)M、N、P分別為AE、AD、DE上動(dòng)點(diǎn),直接寫(xiě)出MN+MP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn).

1)求=______,=______;

2)根據(jù)函數(shù)圖象可知,當(dāng)時(shí),的取值范圍是____________.

3)求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)分別從兩地同時(shí)出發(fā),甲車(chē)勻速前往地,到達(dá)地立即以另一速度按原路勻速返回到地;乙車(chē)勻速前往地,設(shè)甲、乙兩車(chē)距地的路程為(千米),甲車(chē)行駛的時(shí)間為(小時(shí))之間的函數(shù)圖象如圖所示:

1)甲車(chē)從地開(kāi)往地時(shí)的速度是_________;乙車(chē)從地開(kāi)往地時(shí)的速度是______.

2)圖中點(diǎn)的坐標(biāo)是(______,______);

3)求甲車(chē)返回時(shí)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1)(-12-5+-14--39 2

35(a2bab2)(ab23a2b) 4(用簡(jiǎn)便方法計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,E是AD上一點(diǎn),AE=AB,過(guò)點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.

(1)如圖1,當(dāng)EF與AB相交時(shí),若EAB=60°,求證:EG=AG+BG;

(2)如圖2,當(dāng)EF與AB相交時(shí),若∠EAB=α(0°<α<90°),請(qǐng)你直接寫(xiě)出線段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);

(3)如圖3,當(dāng)EF與CD相交時(shí),且EAB=90°,請(qǐng)你寫(xiě)出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C,DO上,AB=AC,ADBC相交于點(diǎn)E,AE=ED,延長(zhǎng)DB到點(diǎn)F,使FB=BD,連接AF.

(1)證明:△BDE∽△FDA;

(2)試判斷直線AF⊙O的位置關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案