【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為M,下列結論不一定成立的是( )
A.CM=DMB.
C.△OCM≌△ODMD.OM=MB
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的邊OA在x軸上,OA=10cm,OC在y軸上,且OC=4cm,P為OA 的中點,動點Q從C點出發(fā),沿著CB以每秒1cm的速度運動(Q到B點時停止運動),當△OPQ是以OP為腰的等腰三角形時,點Q的運動時間=_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示拋物線過點,點,且
(1)求拋物線的解析式及其對稱軸;
(2)點在直線上的兩個動點,且,點在點的上方,求四邊形的周長的最小值;
(3)點為拋物線上一點,連接,直線把四邊形的面積分為3∶5兩部分,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,四邊形ABCD內接于以BC為直徑的圓,圓心為O,且AB=AD,延長CB、DA交于P,過C點作PD的垂線交PD的延長線于E,且PB=BO,連接OA.
(1)求證:OA∥CD;
(2)求線段BC:DC的值;
(3)若CD=18,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上,頂點C、D在該圓內.將正方形ABCD繞點A逆時針旋轉,當點D第一次落在圓上時,點C旋轉到C′,則∠C′AB=__°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線經過點,點,直線,直線,直線經過拋物線的頂點,且與相交于點,直線與軸、軸分別交于點、,若把拋物線上下平移,使拋物線的頂點在直線上(此時拋物線的頂點記為),再把拋物線左右平移,使拋物線的頂點在直線上(此時拋物線的頂點記為).
(1)求拋物線的解析式.
(2)判斷以點為圓心,半徑長為4的圓與直線的位置關系,并說明理由.
(3)設點、在直線上(點在點的下方),當與相似時,求、的坐標(直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在線段CB的延長線上,連接DE交AB于點F,2∠CED=∠AED,點G是DF的中點
(1)求證:∠CED=∠DAG;
(2)若AG=4,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數,a≠0)的“衍生直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.
(1)填空:該拋物線的“衍生直線”的解析式為 ,點A的坐標為 ,點B的坐標為 ;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“衍生三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“衍生直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com