分析 根據(jù)在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,AC=$\sqrt{5}$,BC=2,可得AB的長,然后根據(jù)∠ACB=90°,CD⊥AB,可以得到∠ACD、∠BCD與∠A、∠B的關系,從而可以解答本題.
解答 解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,AC=$\sqrt{5}$,BC=2,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}=\sqrt{(\sqrt{5})^{2}+{2}^{2}}$=$\sqrt{9}=3$,∠CDA=CDB∠=90°.
∴∠ACD+∠A=∠A+∠B=90°,∠BCD+∠B=∠B+∠A=90°.
∴∠ACD=∠B,∠BCD=∠A.
∵sinA=$\frac{BC}{AB}=\frac{2}{3}$,sinB=$\frac{AC}{AB}=\frac{\sqrt{5}}{3}$,
∴sin∠ACD=$\frac{\sqrt{5}}{3}$,sin∠BCD=$\frac{2}{3}$.
點評 本題考查解直角三角形,解題的關鍵是建立各個角之間的關系,根據(jù)相等角的正弦值相等,利用轉(zhuǎn)化的數(shù)學思想解答本題.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com