【題目】(概念學(xué)習(xí))

規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3÷(﹣3÷(﹣3÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2,讀作“2的圈3次方,(﹣3÷(﹣3÷(﹣3÷(﹣3)記作(﹣3,讀作3的圈4次方,一般地,把 a≠0)記作a,讀作“a的圈n次方

1)(初步探究)

直接寫出計算結(jié)果:2=_______,(-=_______;

2)(深入思考)

我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

Ⅰ.試一試:仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.

(﹣3=_______;5=_______; (-) =_______

Ⅱ. 想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式等于_______

Ⅲ. 算一算:

12÷(-)×(-2)(-)÷3.

【答案】1)【初步探究】

-8;

2)【深入思考】

Ⅰ. ;;

Ⅱ.

Ⅲ.

【解析】

1)【初步探究】分別按公式進行計算即可;

2)【深入思考】
Ⅰ.把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結(jié)果;
Ⅱ.結(jié)果第一個數(shù)不變?yōu)?/span>a,第二個數(shù)及后面的數(shù)變?yōu)?/span>,則

Ⅲ.將第二問的規(guī)律代入計算,注意運算順序.

解:(1)【初步探究】

,

故答案為:,-8

2)【深入思考】

Ⅰ. ;

;

故答案為:;;

Ⅱ.

Ⅲ.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知的平面直角坐標(biāo)系中,△ABC的頂點都在正方形網(wǎng)格的格點上,若A,B兩點的坐標(biāo)分別是A(-1,0),B(0,3).

(1)將△ABC繞原點O順時針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1;

(2)以點O為位似中心,與△ABC位似的△A2B2C2滿足A2B2:AB=2:1,請在網(wǎng)格內(nèi)畫出△A2B2C2,并直接填寫△A2B2C2的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點坐標(biāo)分別為A(﹣1,1)、B0,﹣2)、C1,0),點P0,2)繞點A旋轉(zhuǎn)180°得到點,點繞點B旋轉(zhuǎn)180°得到點,點繞點C旋轉(zhuǎn)180°得到點,點繞點A旋轉(zhuǎn)180°得到點,…,按此作法進行下去,則點的坐標(biāo)為( )

A.0,4B.(﹣2,0C.2,﹣4D.(﹣2,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點坐標(biāo)分別為A1,3),B25),C42)(每個方格的邊長均為1個單位長度)

1)將ABC平移,使點A移動到點A1,請畫出A1B1C1;

2)作出ABC關(guān)于O點成中心對稱的A2B2C2,并直接寫出A2,B2C2的坐標(biāo);

3A1B1C1A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列兩個等式:22×+1,55×+1,給出定義如下

我們稱使等式abab+1成立的一對有理數(shù)“a,b”為共生有理數(shù)對”,記為(ab

1)通過計算判斷數(shù)對“﹣2,1”,“4”是不是“共生有理數(shù)對”;

2)若(6,a)是“共生有理數(shù)對”,求a的值;

3)若(m,n)是“共生有理數(shù)對”,則“﹣n,﹣m   “共生有理數(shù)對”(填“是”或“不是”),并說明理由;

4)若(mn)是共生有理數(shù)對(其中n1),直接用含n的代數(shù)式表示m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

1637 年笛卡兒(RDescartes,1596 1650)在其《幾何學(xué)》中,首次應(yīng)用待定系數(shù)法將 4 次方程分解為兩個 2 次方程求解,并最早給出因式分解定理.

他認為,若一個高于二次的關(guān)于 x 的多項式能被 () 整除,則其一定可以分解為 () 與另外一個整式的乘積,而且令這個多項式的值為 0 時, x = a 是關(guān)于 x 的這個方程的一個根.

例如:多項式 可以分解為 () 與另外一個整式 M 的乘積,即

時,可知 x =1 為該方程的一個根.

關(guān)于笛卡爾的待定系數(shù)法原理,舉例說明如下: 分解因式:

觀察知,顯然 x=1 時,原式 = 0 ,因此原式可分解為 () 與另一個整式的積.

令:,則=,因等式兩邊 x 同次冪的系數(shù)相等,則有:,得,從而

此時,不難發(fā)現(xiàn) x= 1 是方程 的一個根.

根據(jù)以上材料,理解并運用材料提供的方法,解答以下問題:

1)若 是多項式 的因式,求 a 的值并將多項式分解因式;

2)若多項式 含有因式 ,求a+ b 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進冰箱、彩電進行銷售.相關(guān)信息如下表:

進價(元/臺)

售價(元/臺)

冰箱

2500

彩電

2000

1)若商場用80000元購進冰箱的數(shù)量與用64000元購進彩電的數(shù)量相等,求表中a的值.

2)為了滿足市場需要求,商場決定用不超過9萬元采購冰箱、彩電共50臺,且冰箱的數(shù)量不少于彩電數(shù)量的

該商場有哪幾種進貨方式?

若該商場將購進的冰箱、彩電全部售出,獲得的最大利潤為w元,請用所學(xué)的函數(shù)知識求出w的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形紙片ABCD中,AB=6,BC=8

1)將矩形紙片沿BD折疊,點A落在點E處(如圖①),設(shè)DEBC相交于點F,求BF的長;

2)將矩形紙片折疊,使點B與點D重合(如圖②),求折痕GH的長.

查看答案和解析>>

同步練習(xí)冊答案