【題目】如圖,是射線上一點,過軸于點,以為邊在其右側作正方形,過的雙曲線邊于點,則的值為  

A. B. C. D. 1

【答案】A

【解析】

設點A的橫坐標為m(m0),則點B的坐標為(m,0),把xm代入得到點A的坐標,結合正方形的性質,得到點C,點D和點E的橫坐標,把點A的坐標代入反比例函數(shù),得到關于mk的值,把點E的橫坐標代入反比例函數(shù)的解析式,得到點E的縱坐標,求出線段DE和線段EC的長度,即可得到答案.

:設點A的橫坐標為m(m0),則點B的坐標為(m,0)

xm代入,得.

則點A的坐標為:(m,),線段AB的長度為,點D的縱坐標為.

∵點A在反比例函數(shù)上,

即反比例函數(shù)的解析式為:

∵四邊形ABCD為正方形,

∴四邊形的邊長為.

∴點C、點D、點E的橫坐標為:

x=代入得:.

∴點E的縱坐標為:

CE=,DE=,

.

故選擇:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們生活水平的提高,家用轎車越來越多地進入家庭.小明家中買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程(如表),以50km為標準,多于50km的記為“+”,不足50km的記為“﹣”,剛好50km的記為“0”.

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

﹣8

﹣11

﹣14

0

﹣16

+41

+8

(1)請求出這七天平均每天行駛多少千米;

(2)若每行駛100km需用汽油6升,汽油價6.2元/升,請估計小明家一個月(按30天計)的汽油費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12OC邊長為3.

(1)數(shù)軸上點A表示的數(shù)為 .

(2)將長方形OABC沿數(shù)軸水平移動,移動后的長方形記為OABC,移動后的長方形OABC與原長方形OABC重疊部分(如圖8中陰影部分)的面積記為S.

①當S恰好等于原長方形OABC面積的一半時,數(shù)軸上點A表示的數(shù)是 .

②設點A的移動距離AA'=x

()S4時,求x的值;

()D為線段AA的中點,點E在找段OO'上,且OO'=3OE,當點DE所表示的數(shù)互為相反數(shù)時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將圖①中的正方形剪開得到圖②,圖②中共有4個正方形;將圖②中的一個正方形剪開得到圖③,圖③中共有7個正方形;將圖③中的一個正方形剪開得到圖④,圖④中共有10個正方形……如此下去,則第2019個圖中共有正方形的個數(shù)為( ).

A.6052B.6055C.6058D.6061

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為1的正方形ABCD,P是對角線AC上的一個動點(與點A. C不重合),過點PPEPB,PE交射線DC于點E,過點EEFAC,垂足為點F,當點E落在線段CD上時(如圖),

1)求證:PB=PE

2)在點P的運動過程中,PF的長度是否發(fā)生變化?若不變,試求出這個不變的值,若變化,試說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OB是∠AOC的平分線,OD是∠COE的平分線.

1)若∠AOB40°,∠DOE30°,求∠BOD的度數(shù);

2)若∠AOD與∠BOD互補,且∠DOE35°,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是平面直角坐標系的原點.在四邊形OABC中,ABOC,BCx軸于C,A(1,1),B(3,1),動點PO點出發(fā),沿x軸正方向以2個單位/秒的速度運動.設P點運動的時間為t秒(0t2).

(1)求經過O、A、B三點的拋物線的解析式;

(2)過PPDOAD,以點P為圓心,PD為半徑作⊙P,P在點P的右側與x軸交于點Q.

①則P點的坐標為_____,Q點的坐標為_____;(用含t的代數(shù)式表示)

②試求t為何值時,⊙P與四邊形OABC的兩邊同時相切;

③設△OPD與四邊形OABC重疊的面積為S,請直接寫出St的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形ABCD中,,點EF分別在BC、CD上,,試探究面積的最小值。

下面是小麗的探究過程:

(1)延長EBG,使,連接AG,可以證明.請完成她的證明;

(2),,

①結合(1)中結論,通過計算得到x的部分對應值。請求出表格中a的值:(寫出解答過程)

x

0

1

2

3

4

5

6

7

8

9

10

10

8.18

6.67

5.38

4.29

3.33

a

1.76

1.11

0.53

0

②利用上表和(1)中的結論通過描點、連線可以分別畫出函數(shù)、的圖像、請在圖②中完善她的畫圖;

根據(jù)以上探究,估計面積的最小值約為(結果估計到01)。

圖① 圖②

查看答案和解析>>

同步練習冊答案