【題目】下列運算中,結(jié)果正確的是( )
A.a3a4=a12
B.a10÷a2=a5
C.a2+a3=a5
D.4a﹣a=3a
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=ax+b(a≠0)經(jīng)過點A(﹣3,0)和點B(0,2),那么關(guān)于x的方程ax+b=0的解是( )
A.x=﹣3
B.x=﹣1
C.x=0
D.x=2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE= AC,連接AE交OD于點F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等邊△ABC中,AO是BC邊上的高,D為AO上一點,以CD為一邊,在CD下方作等邊△CDE,連接BE.
(1)求證:△ACD≌△BCE
(2)過點C作CH⊥BE,交BE的延長線于H,若BC=8,求CH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C1:y=(x-1)2+1與y軸交于點A,過點A與點(1,3)的直線與C1交于點B
(1) 求直線AB的函數(shù)表達式
(2) 如圖1,若點P為直線AB下方的C1上一點,求點P到直線AB的距離的最大值
(3) 如圖2,將直線AB繞點A順時針旋轉(zhuǎn)90°后恰好經(jīng)過C1的頂點C,沿射線AC的方向平移拋物線C1得到拋物線C2,C2的頂點為D,兩拋物線相交于點E.設交點E的橫坐標為m.若∠AED=90°,求m的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD為菱形,點P為對角線BD上的一個動點.
(1)如圖1,連接AP并延長交BC的延長線于點E,連接 PC,求證:∠AEB=∠PCD.
(2)如圖1,當PA=PD且PC⊥BE時,求∠ABC的度數(shù).
(3)連接AP并延長交射線BC于點E,連接 PC,若∠ABC=90°且ΔPCE是等腰三角形,求得∠PEC的度數(shù) (第(3)問 直接寫出結(jié)果,不寫過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于點D,經(jīng)過B、D兩點的⊙O交AB 于點E,交BC于點F,EB為⊙O的直徑.
(1)求證:AC是⊙O的切線;
(2)當BC=2,cos∠ABC=時,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com