【題目】如圖1,正方形ABCD在直角坐標系中,其中AB邊在y軸上,其余各邊均與坐標軸平行,直線lyx5沿y軸的正方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長為m,平移的時間為t(秒),mt的函數(shù)圖象如圖2所示,則圖2b的值為( 。

A.3B.5C.6D.10

【答案】C

【解析】

先根據(jù)ABD為等腰直角三角形,可得直線l與直線BD平行,即直線l沿x軸的負方向平移時,同時經(jīng)過BD兩點,再根據(jù)BD的長即可得到b的值.

如圖1,直線yx5中,令y0,得x5;令x0,得y=﹣5,

即直線yx5與坐標軸圍成的OEF為等腰直角三角形,

∴直線l與直線BD平行,即直線l沿x軸的負方向平移時,同時經(jīng)過B,D兩點,

由圖2可得,t3時,直線l經(jīng)過點A,

AO53×12

A(﹣2,0),

由圖2可得,t15時,直線l經(jīng)過點C,

∴當t,直線l經(jīng)過B,D兩點,

AD=(93×16,

∴等腰RtABD中,BD,

即當a9時,b

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,點和點是對角線上的兩點,過點的延長線于點

1)求證:四邊形是平行四邊形.

2)若,BC=4,則的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,點DAB下方⊙O上一點,點C為弧ABD中點,連接CD,CA

1)若∠ABDα,求∠BDC(用α表示);

2)過點CCEABH,交ADE,∠CADβ,求∠ACE(用β表示);

3)在(2)的條件下,若OH5,AD24,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓p(單位:千帕)隨氣體體積V(單位:立方米)的變化而變化,pV的變化情況如表所示.

P

1.5

2

2.5

3

4

V

64

48

38.4

32

24

(1)寫出一個符合表格數(shù)據(jù)的p關(guān)于V的函數(shù)解析式   

(2)當氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈,依照?/span>1)中的函數(shù)解析式,基于安全考慮,氣球的體積至少為多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,弦CDABEACD=30°,AE=2cm.求DB長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是邊長為4的等邊三角形,邊AB在射線OM上,且OA6,點D是射線OM上的動點,當點D不與點A重合時,將△ACD繞點C逆時針方向旋轉(zhuǎn)60°得到△BCE,連接DE,設(shè)ODm

(1)問題發(fā)現(xiàn)

如圖1,△CDE的形狀是   三角形.

(2)探究證明

如圖2,當6m10時,△BDE的周長是否存在最小值?若存在,求出△BDE周長的最小值;若不存在,請說明理由.

(3)解決問題

是否存在m的值,使△DEB是直角三角形?若存在,請直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進一批進價為20/件的日用商品,第一個月,按進價提高50%的價格出售,售出400件;第二個月,商店準備在不低于原售價的基礎(chǔ)上進行加價銷售,根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少.銷售量y()與銷售單價x()的關(guān)系如圖所示.

(1)yx之間的函數(shù)表達式;

(2)第二個月的銷售單價定為多少元時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,∠C90°,∠BAC的角平分線ADBC邊于D

1)以AB邊上一點O為圓心,過AD兩點作⊙O,并標出圓心.(不寫作法,保留作圖痕跡).

2)判斷直線BC與⊙O的位置關(guān)系,并說明理由.

3)若AB8,BD4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca0)的圖象如圖所示,根據(jù)圖象解答下列問題:

1)寫出方程ax2+bx+c0的兩個根;

2)寫出不等式ax2+bx+c0的解集;

3)若方程ax2+bx+ck有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案