【題目】已知正方形OABC的邊OC、OA分別在x、y軸的正半軸上,點B坐標(biāo)為(10,10),點P從O出發(fā)沿O→C→B運動,速度為1個單位每秒,連接AP.設(shè)運動時間為t.
(1)若拋物線y=﹣(x﹣h)2+k經(jīng)過A,B兩點,求拋物線函數(shù)關(guān)系式;
(2)當(dāng)0≤t≤10時,如圖1,過點O作OH⊥AP于點H,直線OH交邊BC于點D,連接AD,PD,設(shè)△APD的面積為S,求S的最小值;
(3)在圖2中以A為圓心,OA長為半徑作⊙A,當(dāng)0≤t≤20時,過點P作PQ⊥x軸(Q在P的上方),且線段PQ=t+12:
①當(dāng)t在什么范圍內(nèi),線段PQ與⊙A只有一個公共點?當(dāng)t在什么范圍內(nèi),線段PQ與⊙A有兩個公共點?
②請將①中求得的t的范圍作為條件,證明:當(dāng)t取該范圍內(nèi)任何值時,線段PQ與⊙A總有兩個公共點.
【答案】
(1)解:∵拋物線y=﹣(x﹣h)2+k經(jīng)過A、B兩點,
∴根據(jù)對稱性可知h=5,
將B(10,10)代入y=﹣(x﹣5)2+k,可得10=﹣25+k,
解得k=35,
∴拋物線函數(shù)關(guān)系式為y=﹣(x﹣5)2+35;
(2)解:如圖1,∵OD⊥AP,∠AOP=90°,
∴∠OAP+∠AOD=∠COD+∠AOD=90°,
∴∠OAP=∠COD,
又∵∠AOP=∠OCD=90°,AO=OC,
∴△AOP≌△OCD,
∴OP=CD=t,
∴CP=10﹣t,BD=10﹣t,
∵S△ADP=S正方形ABCO﹣S△AOP﹣S△ABD﹣S△CDP,
∴當(dāng)0≤t≤10時,S=10×10﹣ ×10t﹣ t(10﹣t)﹣ ×10(10﹣t)= t2﹣5t+50,
配方,得S= (t﹣5)2+ ,
∴當(dāng)t=5時,Smin=
(3)解:①如圖,當(dāng)點Q在⊙A上時,連接AQ,
∵PQ=12+t,PR=BC=10,
∴RQ=2+t,
又∵AQ=AB=10,AR=OP=t,
∴Rt△ARQ中,t2+(t+2)2=102,
解得t1=6,t2=﹣8(舍去),
∴當(dāng)t=6時,點Q落在⊙A上;
如圖,當(dāng)P在CB上時,CQ與⊙A相切,
當(dāng)點P與點C重合時,t=10;當(dāng)點P與點B重合時,t=20;
∴當(dāng)0≤t<6或10≤t≤20時,線段PQ與⊙A只有一個公共點;
當(dāng)6≤t<10時,線段PQ與⊙A有兩個公共點;
②如圖,當(dāng)6≤t<10時,AR=t<10,
∴⊙A與直線PQ相交,
又∵AP2=AO2+OP2=100+t2,即AP>10,
∴點P在⊙A外,
又∵AQ2=AR2+RQ2=t2+(t+2)2,r2=100,
∴AQ2﹣r2=t2+(t+2)2﹣100=2(t+1)2﹣98,
∴當(dāng)6≤t<10時,2(t+1)2﹣98≥0,
∴點Q在⊙A上或⊙A外,
綜上所述,當(dāng)6≤t<10時,線段PQ與⊙A總有兩個公共點.
【解析】(1)根據(jù)正方形的性質(zhì)和二次函數(shù)的對稱性可求出h=5,再把B的坐標(biāo)代入解析式可求得;
(2)先證明△AOP≌△OCD可得OP=CD=t,從而可表示出CP和BD,根據(jù)S△ADP=S正方形ABCO﹣S△AOP﹣S△ABD﹣S△CDP可得S與t的關(guān)系式,從而求出S的最小值;
(3)①先求出點P與點C重合、與點B重合時的t的值以及Q落在圓A上時的t的值,結(jié)合題意可得t的取值范圍;
②由題意易得圓A與直線PQ相交和點P在圓外,在證明點Q在圓上或圓外即可.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的最值和勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個變量x,y之間的變化情況如圖所示,根據(jù)圖象回答下列問題:
(1)寫出y的變化范圍;
(2)求當(dāng)x=0,-3時,y的對應(yīng)值;
(3)求當(dāng)y=0,3時,對應(yīng)的x的值;
(4)當(dāng)x為何值時,y的值最大?
(5)當(dāng)x在什么范圍內(nèi)時,y的值在不斷增加?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠1=∠2,CF平分∠DCE.
(1)試判斷直線AC與BD有怎樣的位置關(guān)系?并說明理由;
(2)若∠1=80°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AC=AD,AC平分∠BAD,點P是AC延長線上一點,且PD⊥AD.
(1)證明:∠BDC=∠PDC;
(2)若AC與BD相交于點E,AB=1,CE:CP=2:3,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=3,點E在邊BC上,將△ABE沿直線AE折疊,點B恰好落在對角線AC上的點F處,若∠EAC=∠ECA,則AC的長是( )
A.
B.6
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點F,E為四邊形ABCD外一點,且∠ADE=∠BAD,AE⊥AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC沿EF對折,疊合后的圖形如圖所示.若∠A=60°,∠1=90°,則∠2的度數(shù)為( )
A. 24°B. 25°C. 30°D. 35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC=2,A為半徑為1的⊙B上一點,連接AC,在AC上方作一個正六邊形ACDEFG,連接BD,則BD的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn)。當(dāng)點D恰好落在BC邊上時,填空:線段DE與AC的位置關(guān)系是 ;
② 設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是 。
(2)猜想論證
當(dāng)△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF =S△BDC,請直接寫出相應(yīng)的BF的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com