【題目】如圖,已知直線l與⊙O無公共點,OAl于點A,交⊙O于點P,點B是⊙O上一點,連接BP并延長交直線l于點C,使得AB=AC

1)求證:AB是⊙O的切線;

2)若BP=2,sinACB,求AB的長.

【答案】1)證明見解析;(2AB

【解析】

(1)連結(jié)OB,根據(jù)等腰三角形的性質(zhì)、對頂角相等證明∠OBA=90°,根據(jù)切線的判定定理證明即可;
(2)作直徑BD,連接PD,則∠BPD=90°,根據(jù)圓周角定理得出△PBD是直角三角形,進而求得,即為直角三角形求得直徑BD,根據(jù),得到,然后設(shè),則,在中,根據(jù)勾股定理得到,解得x的值,即可求得AB的長.

(1)連結(jié)OB,如圖1

AB=AC,

∴∠ABC=ACB

OAl

∴∠ACB+APC=90°.

OB=OP,

∴∠OBP=OPB

∵∠OPB=APC,

∴∠OBP+ACB=90°,

∴∠OBP+ABC=90°,即∠OBA=90°,

OBAB,

AB是⊙O的切線;

(2)作直徑BD,連接PD,則∠BPD=90°,如圖2

AB是⊙O的切線,

∴∠ABC=D

∵∠ABC=ACB,

∴∠D=ABC=ACB

sinACB,

sinD,

BP=2,

BD=10

OB=OP=5

sinACB,

,

設(shè)PA=,則PC=,

,

,

設(shè)PA=x,則AB=AC=2x,

RtAOB中,AB=2x,OB=5,OA=5+x,

(2x)2+52=(5+x)2

解得:x,

AB=2x

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,△ABC的位置如圖所示.


1)分別寫出△ABC各個頂點的坐標;
2)分別寫出頂點A關(guān)于x軸對稱的點A′的坐標、頂點B關(guān)于y軸對稱的點B′的坐標及頂點C關(guān)于原點對稱的點C′的坐標;
3)求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點上,,若⊙的圓心在線段上,且⊙都相切,則⊙的半徑是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.

(1)開通隧道前,汽車從A地到B地大約要走多少千米?

(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小雪設(shè)計的“作以已知線段為斜邊的等腰直角三角形”的尺規(guī)作圖過程.

已知:線段AB

求作:以AB為斜邊的一個等腰直角△ABC

作法:

1)分別以點A和點B為圓心,大于AB的長為半徑作弧,兩弧相交于P、Q兩點;

2)作直線PQ,交AB于點O;

3)以O為圓心,OA的長為半徑作圓,交直線PQ于點C

4)連接ACBC

則△ABC即為所求作的三角形.根據(jù)小雪設(shè)計的尺規(guī)作圖過程:

1)使用直尺和圓規(guī)補全圖形(保留作圖痕跡);

2)完成下面的證明:

證明:∵PA=PBQA=QB,∴PQ垂直平分AB

在⊙O中,

AB為直徑,∴∠ACB=90°(

又∵∠AOC=BOC=90°,∴AC=BC ),∴△ABC為以AB為斜邊的等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)前夕舉行了南通濠河國際龍舟邀請賽,在500米直道競速賽道上,甲、乙兩隊所劃行的路程y(單位:米)與時間t(單位:分)之間的函數(shù)關(guān)系式如圖所示,根據(jù)圖中提供的信息,有下列說法:①甲隊比乙隊提前0.5分到達終點②當(dāng)劃行1分鐘時,甲隊比乙隊落后50米③當(dāng)劃行分鐘時,甲隊追上乙隊④當(dāng)甲隊追上乙隊時,兩隊劃行的路程都是300米其中錯誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC,∠ACB=90°,AC=4cm,BC=6cm,DBC的中點.EA出發(fā)acm/s(a>0)的速度沿AC勻速向點C運動;點F同時以1cm/s的速度從點C出發(fā),沿CB勻速向點B運動,其中一個動點到達端點時,另一個動點也隨之停止運動,過點EAC的垂線AD于點G,連接EF,F(xiàn)G,設(shè)它們運動的時間為t(t≥t0).

(1)t=2,△CEF∽△ABC,求a的值;

(2)當(dāng)a=,以點E、F、D、G為頂點點四邊形時平行四邊形,求t的值;

(3)a=2,是否存在實數(shù)t,使得點△DFG是直角三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1的坐標為(10),A2y軸的正半軸上,且∠A1A2O30°,過點A2A2A3A1A2垂足為A2,交x軸于點A3過點A3A3A4A2A3,垂足為A3,交y軸于點A4,過點A4A4A5A3A4,垂足為A4x軸于點A5:過點A5A5A6A4A5,A5A6A4A5垂足為A5,交y軸于點A6按此規(guī)律進行下去,則點A2019的橫坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0A1兩點,頂點為D1;將C1繞點A1旋轉(zhuǎn)180°得到C2,頂點為D2;C1C2組成一個新的圖象,垂直于y軸的直線l與新圖象交于點P1x1,y1),P2x2,y2),與線段D1D2交于點P3x3,y3),設(shè)x1x2,x3均為正數(shù),tx1+x2+x3,則t的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊答案