如圖,已知⊙P的半徑為3,圓心P在拋物線y=
1
2
x2上運動,當(dāng)⊙P與x軸相切時,圓心P的坐標(biāo)為(  )
A.(
6
,3)
B.(
3
,3)
C.(
6
,3)或(-
6
,3)
D.(
3
,3)或(-
3
,3)

∵⊙P的半徑為3,圓心P在拋物線y=
1
2
x2上運動,
∴當(dāng)⊙P與x軸相切時,
∴PA=3,即縱坐標(biāo)為:3,
∴代入二次函數(shù)解析式:3=
1
2
x2
解得:x=±
6
,
∴圓心P的坐標(biāo)為:(-
6
,3),(
6
,3),
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中(如圖),已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(0,3)和點B(3,0),其頂點記為點C.
(1)確定此二次函數(shù)的解析式,并寫出頂點C的坐標(biāo);
(2)將直線CB向上平移3個單位長度,求平移后直線l的解析式;
(3)在(2)的條件下,能否在直線上l找一點D,使得以點C、B、D、O為頂點的四邊形是等腰梯形.若能,請求出點D的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)與直線y=kx+b交于A(3,0)、C(0,3)兩點,拋物線的頂點坐標(biāo)為Q(2,-1).點P是該拋物線上一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PDy軸,交直線AC于點D.
(1)求該拋物線的解析式;
(2)設(shè)P點的橫坐標(biāo)為t,PD的長度為l,求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點P的坐標(biāo).
(3)在問題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=-x2+bx+c經(jīng)過直線y=-x+3與坐標(biāo)軸的兩個交點A、B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)點M為拋物線上的一個動點,求使得△ABM的面積與△ABD的面積相等的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某大學(xué)的校門是一拋物線水泥建筑物,大門的地面寬度為6米,兩側(cè)距地面2米高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為4米,則校門的高為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店將進價為100元的某商品按120元的價格出售,可賣出300件;若商店在120元的基礎(chǔ)上每漲價1元,就要少賣10件,而每降價1元,就可多賣30件.
(1)求所獲利潤y(元)與售價x(元)之間的函數(shù)關(guān)系式;
(2)為了獲取最大利潤,商店應(yīng)將每件商品的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知A1,A2,A3,…,A2009是x軸上的點,且OA1=A1A2=A2A3=…=A2008A2009=1,分別過點A1,A2,A3,…,A2009作x軸的垂線交二次函數(shù)y=x2(x≥0)的圖象于點P1,P2,P3,…,P2009,若記△OA1P1的面積為S1,過點P1作P1B1⊥A2P2于點B1,記△P1B1P2的面積為S2,過點P2作P2B2⊥A3P3于點B2,記△P2B2P3的面積為S3,…,依次進行下去,最后記△P2008B2008P2009的面積為S2009,則S2009-S2008=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長方形雞場的一邊靠墻(墻長18m),墻對面有一個2m寬的門,另三邊用竹籬笆圍成,籬笆總長33m,
(1)若雞場面積為150m2,求雞場的長和寬各為多少m?
(2)求圍成的雞場的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

涪陵榨菜是重慶市農(nóng)村經(jīng)濟中產(chǎn)銷規(guī)模最大、品牌知名度最高、輻射帶動能力最強的特色支柱產(chǎn)業(yè).某知名榨菜企業(yè)為順應(yīng)市場需求推出了“五味榨菜”禮盒,成本為20元/盒.年銷售量y(萬盒)與售價x(元/盒)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)結(jié)合圖象求y與x之間的函數(shù)關(guān)系;
(2)求“五味榨菜”禮盒的年獲利w(萬元)與x之間的函數(shù)關(guān)系,并求當(dāng)售價為多少元時可以獲得最大利潤,最大利潤是多少萬元?
(3)去年,公司一直按照(2)中獲得最大利潤時的售價進行銷售,今年在保持售價不變的基礎(chǔ)上,公司發(fā)力品牌營銷,決定拿出部分資金進行廣告宣傳.經(jīng)調(diào)查發(fā)現(xiàn):①每年有11萬盒產(chǎn)品供給固定客戶,其余產(chǎn)品全部被潛在客房購買;②若廣告投入為a萬元,則潛在客戶的購買量將是去年購買量的m倍,則m=-
1
900
(a-30)2+2
;③受公司生產(chǎn)規(guī)模及資金限制,公司的年產(chǎn)量不超過28萬盒,廣告投入不超過32萬元.問公司在廣告上投入多少資金可以使公司獲得最大利潤,最大利潤為多少萬元?(利潤=總銷售額-總成本-廣告費)

查看答案和解析>>

同步練習(xí)冊答案