【題目】已知拋物線y=ax2+bx+c(a≠0)經過原點,
(1)當頂點坐標為(2,2)時,求此函數(shù)的解析式;
(2)繼續(xù)探究,如果b≠0,且拋物線頂點坐標為(m,m),m≠0,求此函數(shù)的解析式(用含m的式子表示)
(3)現(xiàn)有一組過原點的拋物線,頂點A1,A2,An在直線y=x上,橫坐標依次為1,2,…,n(n為正整數(shù),且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1,B2,…,Bn,以線段AnBn為邊向右作正方形AnBnnDn,若這組拋物線中有一條經過Dn,求所有滿足條件的正方形邊長.
【答案】(1)y=﹣x2+2x;(2)y=﹣x2+2x;(3)滿足條件的正方形邊長是3,6或9.
【解析】
(1)頂點坐標為(2,2)時,拋物線的表達式為:y=a(x2)2+2=ax24ax+4a+2,故4a+2=0,解得:a=,即可求解;
(2)拋物線頂點坐標為(m,m),拋物線的表達式為:y=a(xm)2+m=ax22max+am2+m,即:am2+m=0,解得:a=,即可求解;
(3)點Dn所在的拋物線解析式為y=x2+2x.四邊形AnBnCnDn是正方形,則點Dn的坐標是(2n,n),(2n)2+22n=n,4n=3t,即可求解.
拋物線y=ax2+bx+c(a≠0)經過原點,則拋物線的表達式為:y=ax2+bx;
(1)頂點坐標為(2,2)時,拋物線的表達式為:y=a(x﹣2)2+2=ax2﹣4ax+4a+2,
故4a+2=0,解得:a=﹣,
故拋物線的表達式為:y=﹣(x﹣2)2+2=﹣x2+2x;
(2)拋物線頂點坐標為(m,m),拋物線的表達式為:y=a(x﹣m)2+m=ax2﹣2max+am2+m,
即:am2+m=0,解得:a=﹣,
故拋物線的表達式為:y=﹣(x﹣m)2+m=﹣x2+2x;
(3)∵頂點A1,A2,…,An在直線y=x上,
∴可設An(n,n),點Dn所在的拋物線頂點坐標為(t,t).
∴a=﹣x2+2x.
∵四邊形AnBnC nDn是正方形,C
∴點Dn的坐標是(2n,n),
∴﹣(2n)2+22n=n,
∴4n=3t.
∵t、n是正整數(shù),且t≤12,n≤12,
∴n=3,6或9.
∴滿足條件的正方形邊長是3,6或9.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的直徑,點在上,且四邊形是平行四邊形,過點作的切線,分別交的延長線與的延長線于點,連接。
(1)求證:是的切線;
(2)若的半徑為1,求的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+3.
(1)在下面的直角坐標系中畫出函數(shù)的圖象;
(2)寫出函數(shù)的3條性質.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結論:
①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結論有( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小東根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了探究.下面是小東的探究過程,請補充完整,并解決相關問題:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值為________________;
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點. 根據(jù)描出的點,畫出函數(shù)的大致圖象;
(4)結合函數(shù)圖象,請寫出函數(shù)的一條性質:______________________.
(5)解決問題:如果函數(shù)與直線y=a的交點有2個,那么a的取值范圍是______________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,△ABC的邊AC,BC分別與⊙O交于D,E,若E為的中點.
(1)求證:DE=EC;
(2)若DC=2,BC=6,求⊙O的半徑
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2+mx+m﹣3=0.
(1)若該方程的一個根為2,求m的值及方程的另一個根;
(2)求證:不論m取何實數(shù),該方程都有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,的長為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com