【題目】如圖,矩形ABCD中,AB=16cm,BC=6cm,點P從點A出發(fā)沿AB向點B移動(不與點A、B重合),一直到達點B為止;同時,點Q從點C出發(fā)沿CD向點D移動(不與點C、D重合).運動時間設為t秒.
(1)若點P、Q均以3cm/s的速度移動,則:AP= cm;QC= cm.(用含t的代數(shù)式表示)
(2)若點P為3cm/s的速度移動,點Q以2cm/s的速度移動,經(jīng)過多長時間PD=PQ,使△DPQ為等腰三角形?
(3)若點P、Q均以3cm/s的速度移動,經(jīng)過多長時間,四邊形BPDQ為菱形?
【答案】(1)3t,3t;(2)當t=2時,PD=PQ,△DPQ為等腰三角形;(3)當 時,四邊形BPDQ是菱形.
【解析】分析:(1)根據(jù)路程=速度×時間,即可解決問題.(2)過點P作PE⊥CD于點E,利用等腰三角形三線合一的性質,DE=DQ,列出方程即可解決問題.(3)當PD=PB時,四邊形BPDQ是菱形,列出方程即可解決問題.
本題解析:(1) , ;
(2)過點P作PE⊥CD于點E ∴ ∠PED=90° ∵ PD=PQ ∴ DE=DQ
在矩形ABCD中,∠A=∠ADE=90°,CD=AB=16㎝
∴ 四邊形PEDA是矩形 ∴ DE=AP=3 又∵ CQ=2 ∴ DQ=16-
∴ 由DE=DQ ∴ ∴
∴ 當時,PD=PQ,△DPQ為等腰三角形
(3)在矩形ABCD中,AB=CD,AB∥CD,AD=BC,依題知AP=CQ=3
∴ PB=DQ ∴ 四邊形BPDQ是平行四邊形
當PD=PB時,四邊形BPDQ是菱形 ∴ PB=AB-AP=16-3
在Rt△APD中,PD=
由PD=PB ∴ 即: 解得:
∴ 當時,四邊形BPDQ是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若AB=4,AD=8,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個暗箱中裝有紅、黃、白三種顏色的乒乓球(除顏色外其余均相同).其中白球、黃球各1個,若從中任意摸出一個球是白球的概率是.
(1)求暗箱中紅球的個數(shù);
(2)先從暗箱中任意摸出一個球記下顏色后放回,再從暗箱中任意摸出一個球,求兩次摸到的球顏色不同的概率(用樹形圖或列表法求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=600,則AE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB是一角度為10°的鋼架,要使鋼架更加牢固,需在其內部添加一些鋼管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足夠長的情況下,最多能添加這樣的鋼管的根數(shù)為 _________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知甲、乙兩種商品原單價的和為100元,因市場變化,甲商品降價10%,乙商品提價5%.調價后,甲、乙兩種商品的單價和比原單價和提高了2%,求甲、乙兩種商品的原單價各是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,AD是∠BAC的平分線.
(1)尺規(guī)作圖:過點D作DE⊥AC于E;
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com