【題目】如圖,點、為直線上的兩點,過、兩點分別作軸的平行線交雙曲線(x>0)于點、兩點.若,則的值為( )
A. B. C. D.
【答案】B
【解析】
延長AC交x軸于E,延長BD交x軸于F.設(shè)A、B的橫坐標分別是a,b,點A、B為直線y=x上的兩點,A的坐標是(a,a),B的坐標是(b,b).則AE=OE=a,BF=OF=b.根據(jù)BD=2AC即可得到a,b的關(guān)系,然后利用勾股定理,即可用a,b表示出所求的式子從而求解.
延長AC交x軸于E,延長BD交x軸于F.
設(shè)A.B的橫坐標分別是a,b,
∵點A.B為直線y=x上的兩點,
∴A的坐標是(a,a),B的坐標是(b,b).則AE=OE=a,BF=OF=b.
∵C、D兩點在交雙曲線y=1x(x>0)上,則CE=,DF=.
∴BD=BFDF=b,AC=a.
又∵BD=2AC
∴b1b=2(a),
兩邊平方得:b2+ 2=4(a2+ 2),即b2+ =4(a2+)6.
在直角△OCE中,OC2=OE2+CE2=a2+,同理OD2=b2+,
∴4OC20D2=4(a2+)(b2+)=6,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程.
(1)2(1-x)2-8=0 (2 )2x2x-1=0 (公式法)
(3)x2-3x+1=0(配方法) (4) (x-1)2-5(x-1)+6=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點E,若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖,在正方形和平行四邊形中,點,,在同一條直線上,是線段的中點,連接,.
探究:當與的夾角為多少度時,平行四邊形是正方形?
小聰同學(xué)的思路是:首先可以說明四邊形是矩形;然后延長交于點,構(gòu)造全等三角形,經(jīng)過推理可以探索出問題的答案.
請你參考小聰同學(xué)的思路,探究并解決這個問題.
(1)求證:四邊形是矩形;
(2)與的夾角為________度時,四邊形是正方形.
理由:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系中,AB 兩點的坐標分別為 A(1,4),B(5,1),P,Q 分別是 x 軸,y 軸 上兩個動點,則四邊形 ABPQ 的周長最小值為( )
A.5B.5 C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期初,某校為迎接中華人民共和國建國七十周年,開展了以“不忘初心,緬懷革命先烈,奮斗新時代”為主題的讀書活動。校德育處對本校七年級學(xué)生四月份“閱讀該主題相關(guān)書籍的讀書量”(下面簡稱:“讀書量”)進行了隨機抽樣調(diào)查,并對所有隨機抽取學(xué)生的“讀書量”(單位:本)進行了統(tǒng)計,如下圖所示:
根據(jù)以上信息,解答下列問題:
(1)補全上面兩幅統(tǒng)計圖,填出本次所抽取學(xué)生四月份“讀書量”的眾數(shù)為 ;
(2)求本次所抽取學(xué)生四月份“讀書量”的平均數(shù);
(3)已知該校七年級有1200名學(xué)生,請你估計該校七年級學(xué)生中,四月份“讀書量”為5本的學(xué)生人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,點為的中點.如果點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.
(1)若點的運動速度與點的運動速度相等,經(jīng)過1秒后,與是否全等,請說明理由.
(2)若點的運動速度與點的運動速度不相等,當點的運動速度為多少時,能夠使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=kx+b的圖象經(jīng)過點(0,﹣2),(3,1).
(1)求一次函數(shù)的表達式,并在所給直角坐標系中畫出此函數(shù)的圖象;
(2)根據(jù)圖象回答:當x 時,y1=0;
(3)求直線y1=kx+b、直線y2=﹣2x+4與y軸圍成的三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com