分析 (1)根據(jù)橫坐標(biāo),右移加,左移減;縱坐標(biāo),上移加,下移減進(jìn)行計(jì)算;
(2)設(shè)直線l的解析式為y=kx+b,再把(2,1),(4,-2)代入可得關(guān)于k、b的方程組,解方程得到k、b的值,進(jìn)而可得直線l的解析式.
解答 解:(1)點(diǎn)P1(2,1)先向右平移2個(gè)單位,再向下平移3個(gè)單位得到點(diǎn)P2(4,-2);
(2)設(shè)直線l的解析式為y=kx+b,
∵直線經(jīng)過(2,1),(4,-2),
∴$\left\{\begin{array}{l}{2k+b=1}\\{4k+b=-2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-\frac{3}{2}}\\{b=4}\end{array}\right.$,
∴直線l的解析式為y=-$\frac{3}{2}$x+4.
點(diǎn)評 此題主要考查了一次函數(shù)圖象與幾何變換,關(guān)鍵是掌握待定系數(shù)法求一次函數(shù)解析式一般步驟是:
(1)先設(shè)出函數(shù)的一般形式,如求一次函數(shù)的解析式時(shí),先設(shè)y=kx+b;
(2)將自變量x的值及與它對應(yīng)的函數(shù)值y的值代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;
(3)解方程或方程組,求出待定系數(shù)的值,進(jìn)而寫出函數(shù)解析式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com