【題目】九年級三班學(xué)生蘇琪為幫助同桌萬宇鞏固“平面直角坐標(biāo)系四個象限內(nèi)及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)”這一基礎(chǔ)知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機(jī)抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機(jī)取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標(biāo)系中找出點(diǎn)M(a,b)的位置.
(1)請你用樹狀圖幫萬宇同學(xué)進(jìn)行分析,并寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M在第二象限的概率;
(3)張老師在萬宇同學(xué)所畫的平面直角坐標(biāo)系中,畫了一個半徑為3的⊙O,過點(diǎn)M能作多少條⊙O的切線?請直接寫出答案.
【答案】(1)(﹣3,0)(﹣3,2)(0,﹣3)(0,2)(2,﹣3)(2,0);(2);(3)4條
【解析】
試題(1)畫樹狀圖展示所有6種等可能的結(jié)果數(shù);(2)根據(jù)第二象限點(diǎn)的坐標(biāo)特征找出點(diǎn)M在第二象限的結(jié)果數(shù),然后根據(jù)概率公式求解;(3)畫出圖形得到在⊙O上的有2個點(diǎn),在⊙O外的有2個點(diǎn),在⊙O內(nèi)的有2個點(diǎn),則利用切線的定義可得過⊙O上的有2個點(diǎn)分別畫一條切線,過⊙O外的有2個點(diǎn)分別畫2條切線,但其中有2組切線重合,于是可判斷過點(diǎn)M能作4條⊙O的切線.
試題解析:(1)畫樹狀圖為
共有6種等可能的結(jié)果數(shù),它們是(﹣3,0)(﹣3,2)(0,﹣3)(0,2)(2,﹣3)(2,0);
(2)只有(﹣3,2)在第二象限, ∴點(diǎn)M在第二象限的概率=;
(3)如圖,過點(diǎn)M能作4條⊙O的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點(diǎn)M,EF與AC交于點(diǎn)N,動點(diǎn)P從點(diǎn)A出發(fā)沿AB以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,伴隨點(diǎn)P的運(yùn)動,矩形PEFG在射線AB上滑動;動點(diǎn)K從點(diǎn)P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運(yùn)動.點(diǎn)P、K同時開始運(yùn)動,當(dāng)點(diǎn)K到達(dá)點(diǎn)F時停止運(yùn)動,點(diǎn)P也隨之停止.設(shè)點(diǎn)P、K運(yùn)動的時間是t秒(t>0).
(1)當(dāng)t=1時,KE=_____,EN=_____;
(2)當(dāng)t為何值時,△APM的面積與△MNE的面積相等?
(3)當(dāng)點(diǎn)K到達(dá)點(diǎn)N時,求出t的值;
(4)當(dāng)t為何值時,△PKB是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC.
(1)若AB=4,AC=5,則BC邊的取值范圍是 ;
(2)點(diǎn)D為BC延長線上一點(diǎn),過點(diǎn)D作DE∥AC,交BA的延長線于點(diǎn)E,若∠E=55°,∠ACD=125°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰直角△ABC中,BC=AC,∠ACB=90°,將該三角形在直角坐標(biāo)系中放置.
(1)如圖(1),過點(diǎn)A作AD⊥x軸,當(dāng)B點(diǎn)為(0,1),C點(diǎn)為(3,0)時,求OD的長;
(2)如圖(2),將斜邊頂點(diǎn)A、B分別落在y軸上、x軸上,若A點(diǎn)為(0,1),B點(diǎn)為(4,0),求C點(diǎn)坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AE=CD,AD、BE相交于點(diǎn)P,BQ⊥DA于Q,∠BPQ的度數(shù)是_____;若PQ=3,EP=1,則DA的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)接于⊙O,E為弧CD上任意一點(diǎn),連接DE,AE.
(1)求∠AED的度數(shù);
(2)如圖②,過點(diǎn)B作BF∥DE交⊙O于點(diǎn)F,連接AF,AF=1,AE=4,求DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA,過E作EF⊥AB,F為垂足.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)-2≤x≤1時,二次函數(shù)y=-(x-m)2+m2+1有最大值4,則實(shí)數(shù)m的值為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com