【題目】已知O是直線AB上一點,將一直角三角尺如圖QZ-13(a)放置,一直角邊ON在直線AB上,另一直角邊OM與AB所形成的∠AOM=90°,射線OC在∠AOM內(nèi)部.
(探究)如圖(b),將三角尺繞著點O順時針旋轉(zhuǎn),當(dāng)∠AON=∠CON時,試判斷OM是否平分∠BOC,并說明理由.
(拓展)若∠AOC=80°時,三角尺OMN繞O點順時針旋轉(zhuǎn)一周,每秒旋轉(zhuǎn)5°,則多少秒后,∠MOC=∠MOB?
(延伸)在上述條件下,如圖(c),旋轉(zhuǎn)三角尺使ON在∠BOC內(nèi)部,另一邊OM在直線AB的另一側(cè),下面兩個結(jié)論:①∠NOC-∠BOM的值不變;②∠NOC+∠BOM的值不變.選擇其中一個正確的結(jié)論說明理由.
【答案】【探究】DM平分∠BOC,理由見解析;【拓展】8秒或44秒后,∠MOC=∠MOB;【延伸】①結(jié)論正確,理由見解析.
【解析】
(1)根據(jù)圖形和題意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根據(jù)∠AON=∠CON,即可得出OM平分∠BOC;
(2)根據(jù)∠AOC=80゜,再分兩種情況討論,當(dāng)三角板OMN繞O點順時針旋轉(zhuǎn)40°時,∠MOC=∠MOB和三角板OMN繞O點順時針旋轉(zhuǎn)220°時,∠MOC=∠MOB,從而得出答案;
(3)分別求出∠NOC=100°-∠BON,∠BOM=90°-∠BON,得出∠NOC-∠BOM=10°即可.
探究:DM平分∠BOC.
理由:因為∠AON+∠BOM=90°,∠CON+∠COM=90°,∠AON=∠CON,
所以∠COM=∠BOM,
所以OM平分∠BOC.
拓展:分兩種情況:
因為∠AOC=80°, ①當(dāng)三角尺OMN繞O點順時針旋轉(zhuǎn)40°時,∠MOC=∠MOB,
所以40°÷5=8(秒); ②當(dāng)三角尺OMN繞O點順時針旋轉(zhuǎn)220°時,∠MOC=∠MOB,
所以220°÷5=44(秒).
綜上所述,8秒或44秒后,∠MOC=∠MOB.
延伸:①結(jié)論正確.理由:
因為∠NOC=180°-∠AOC-∠BON=100°-∠BON,∠BOM=90°-∠BON,
所以∠NOC-∠BOM=(100°-∠BON)-(90°-∠BON)=10°,
所以①∠NOC-∠BOM的值不變正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.
求證:(1)AF=CE;
(2)AB∥CD;
(3)AD=CB且AD∥CB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時,y與x成反比例).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時間多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點C,從觀測點C測得一小車從點A到達(dá)點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.(參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo);
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用一個平面去截一個正方體,如果截去的幾何體是一個三棱錐,請回答下列問題:
(1)截面一定是什么圖形?
(2)剩下的幾何體可能有幾個頂點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為直角邊,A為直角頂點,在AD左側(cè)作等腰直角三角形ADF,連接CF,AB=AC,∠BAC=90°.
(1)當(dāng)點D在線段BC上時(不與點B重合),線段CF和BD的數(shù)量關(guān)系與位置關(guān)系分別是什么?請給予證明.
(2)當(dāng)點D在線段BC的延長線上時,(1)的結(jié)論是否仍然成立?請在圖2中畫出相應(yīng)的圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積為6,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,P為直線AD上的一點,則線段BP的長不可能是( )
A.3
B.4
C.5.5
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小趙和小王交流暑假中的活動,小趙說:“我們一家外出旅行了一個星期,這7天的日期數(shù)之和是84天,你知道我們幾號出去的么?”小王說“我暑假去舅舅家住了7天,日歷數(shù)再加月份數(shù)也是84,你能猜出我是幾月幾號回的家?試試看列出方程,解決小趙、小王的問題.(提示:7月1日﹣9月1日暑假)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com