【題目】如圖1,已知以AE為直徑的半圓圓心為O,半徑為5,矩形ABCD的頂點(diǎn)B在直徑AE上,頂點(diǎn)C 在半圓上,AB=8,點(diǎn)P為半圓上一點(diǎn)(不與A、E兩點(diǎn)重合).

(1)矩形ABCD的邊BC的長(zhǎng)為多少;

(2)將矩形沿直線AP折疊,點(diǎn)B落在點(diǎn)B′.

①點(diǎn)B′到直線AE的最大距離是多少;

②當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),如圖2所示,AB′交DC于點(diǎn)M.

求證:四邊形AOCM是菱形,并通過(guò)證明判斷CB′與半圓的位置關(guān)系;

③當(dāng)EB′∥BD時(shí),直接寫(xiě)出EB′的長(zhǎng)為多少.

【答案】(1)4;(2)①8;②見(jiàn)解析;(3)滿足條件的EB′的長(zhǎng)為4+2或4-2

【解析】

(1)圖1中,在RtOBC中,求出BC即可;

(2)①圖1中,當(dāng)點(diǎn)B′在直線AD上時(shí),點(diǎn)B'AE的距離最大,最大距離為8;②首先證明四邊形AOCM是平行四邊形,由OA=OC即可判定四邊形AOCM是菱形.只要證明∠OCB′=90°即可判定CB′與半圓相切;③圖3中,當(dāng)EB′BD時(shí),作AFEB′F.由△AEF∽△DBA,可得==,推出EF=4,AF=2,在RtAFB′中,FB′==2,即可推出EB′=4+2.圖4中,當(dāng)EB′BD時(shí),作AFEB′F,同法可求EB′.

(1)如圖1中,連接OC,

RtBOC中,∵∠OBC=90°,OC=5,OB=3,

BC=

(2)①如圖1中,當(dāng)點(diǎn)B′在直線AD上時(shí),點(diǎn)B'AE的距離最大,最大距離為8.

②證明:

由折疊可知:∠OAC=MAC,

OA=OC,

∴∠OAC=OCA,

∴∠OCA=MAC,

OCAM,

又∵CMOA,

∴四邊形AOCM是平行四邊形,

又∵OA=OC,

AOCM是菱形;

結(jié)論:CB′與半圓相切

理由:由折疊可知:∠ABˊC=ABC=90°,

OCAM,

∴∠ABˊC+BˊCO=180°,

∴∠BˊCO=90°,

CBˊOC,

CBˊ與半圓相切;

③如圖3中,當(dāng)EB′BD時(shí),作AFEB′F,

由△AEF∽△DBA,

,

EF=4,AF=2,

RtAFB′中,FB′=,

EB′=4+2

如圖4中,當(dāng)EB′BD時(shí),作AFEB′F,

同法可得EF=4,F(xiàn)B′=2

EB′=4-2

綜上所述,滿足條件的EB′的長(zhǎng)為4+24-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校舉行漢字聽(tīng)寫(xiě)比賽,每位學(xué)生聽(tīng)寫(xiě)漢字39個(gè),比賽結(jié)束后隨機(jī)抽查部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.

組別

正確數(shù)字x

人數(shù)

A

0≤x8

10

B

8≤x16

15

C

16≤x24

25

D

24≤x32

m

E

32≤x40

n

根據(jù)以上信息解決下列問(wèn)題:

1)在統(tǒng)計(jì)表中,m=   ,n=   ,并補(bǔ)全條形統(tǒng)計(jì)圖.

2)扇形統(tǒng)計(jì)圖中“C所對(duì)應(yīng)的圓心角的度數(shù)是   

3)有三位評(píng)委老師,每位老師在E組學(xué)生完成學(xué)校比賽后,出示通過(guò)淘汰待定的評(píng)定結(jié)果.學(xué)校規(guī)定:每位學(xué)生至少獲得兩位評(píng)委老師的通過(guò)才能代表學(xué)校參加鄂州市漢字聽(tīng)寫(xiě)比賽,請(qǐng)用樹(shù)形圖求出E組學(xué)生王云參加鄂州市漢字聽(tīng)寫(xiě)比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABACDE是邊AB的垂直平分線,交ABE、交ACD,連接BD.

(1)若∠A40°,求∠DBC的度數(shù).

(2)若△BCD的周長(zhǎng)為16cm,△ABC的周長(zhǎng)為26cm,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(1,3),B(﹣2,﹣2),C(2,﹣1).

(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1

(2)寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,在中,,∠ABC=30°,,點(diǎn)、E分別是邊、AC上動(dòng)點(diǎn),點(diǎn)不與點(diǎn)、重合,DEBC

1)如圖1,當(dāng)AE=1時(shí),求長(zhǎng);

2)如圖2,把沿著直線翻折得到,設(shè)

①當(dāng)點(diǎn)F落在斜邊上時(shí),求的值;

如圖3,當(dāng)點(diǎn)F落在外部時(shí),EF、DF分別與相交于點(diǎn)H、G,如果△ABC和△DEF重疊部分的面積為,求的函數(shù)關(guān)系式及定義域.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果拋物線yax2bxc過(guò)定點(diǎn)M(1,0),則稱此拋物線為定點(diǎn)拋物線.

(1)張老師在投影屏幕上出示了一個(gè)題目:請(qǐng)你寫(xiě)出一條定點(diǎn)拋物線的解析式.小敏寫(xiě)出了一個(gè)正確的答案:y=2x2+3x-5.請(qǐng)你寫(xiě)出一個(gè)不同于小敏的答案;

(2)張老師又在投影屏幕上出示了一個(gè)思考題:已知定點(diǎn)拋物線y=-x2+2bxc,求該拋物線的頂點(diǎn)最低時(shí)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工適度取餐,減少浪費(fèi)該公司共有10個(gè)部門,且各部門的人數(shù)相同.為了解午餐的浪費(fèi)情況,從這10個(gè)部門中隨機(jī)抽取了兩個(gè)部門,進(jìn)行了連續(xù)四周(20個(gè)工作日)的調(diào)查,得到這兩個(gè)部門每天午餐浪費(fèi)飯菜的重量,以下簡(jiǎn)稱每日餐余重量(單位:千克),并對(duì)這些數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,):

.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8

.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8

. 兩個(gè)部門這20個(gè)工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:

部門

平均數(shù)

中位數(shù)

眾數(shù)

6.4

7.0

/p>

6.6

7.2

根據(jù)以上信息,回答下列問(wèn)題:

1)寫(xiě)出表中的值;

2)在這兩個(gè)部門中,適度取餐,減少浪費(fèi)做得較好的部門是________(填),理由是____________;

3)結(jié)合這兩個(gè)部門每日餐余重量的數(shù)據(jù),估計(jì)該公司(10個(gè)部門)一年(按240個(gè)工作日計(jì)算)的餐余總重量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,我們就稱其中一個(gè)函數(shù)是另一個(gè)函數(shù)的中心對(duì)稱函數(shù),也稱函數(shù)互為中心對(duì)稱函數(shù).

求函數(shù)的中心對(duì)稱函數(shù);

如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點(diǎn)的坐標(biāo)分別為,,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)E和原點(diǎn)O,頂點(diǎn)為已知函數(shù)互為中心對(duì)稱函數(shù);

請(qǐng)?jiān)趫D中作出二次函數(shù)的頂點(diǎn)作圖工具不限,并畫(huà)出函數(shù)的大致圖象;

當(dāng)四邊形EPFQ是矩形時(shí),請(qǐng)求出a的值;

已知二次函數(shù)互為中心對(duì)稱函數(shù),且的圖象經(jīng)過(guò)的頂點(diǎn)當(dāng)時(shí),求代數(shù)式的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)交于A(4,a).

(1)求一次函數(shù)的解析式;

(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B,C,連接AB,若△ABC是等腰直角三角形,求n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案