精英家教網 > 初中數學 > 題目詳情

【題目】為測量操場上旗桿的高度,小麗同學想到了物理學中平面鏡成像的原理,她拿出隨身攜帶的鏡子和卷尺,先將鏡子放在腳下的地面上,然后后退,直到她站直身子剛好能從鏡子里看到旗桿的頂端E,標記好腳掌中心位置為B,測得腳掌中心位置B到鏡面中心C的距離是50cm,鏡面中心C距離旗桿底部D的距離為4m,如圖所示.已知小麗同學的身高是1.54m,眼睛位置A距離小麗頭頂的距離是4cm,則旗桿DE的高度等于(
A.10m
B.12m
C.12.4m
D.12.32m

【答案】B
【解析】解:由題意可得:AB=1.5m,BC=0.4m,DC=4m, △ABC∽△EDC,
=
= ,
解得:DE=12,
故選:B.
【考點精析】利用相似三角形的應用對題目進行判斷即可得到答案,需要熟知測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,下列說法中不正確的是(  )

A. 1與∠AOB是同一個角B. AOC也可以用∠O表示

C. β=∠BOCD. 圖中有三個角

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一張長方形的紙對折(使寬邊重合,然后再對折),第一次對折,得到一條折痕連同長方形的兩條寬邊共3條等寬線(如圖(1),第二次對折(每次的折痕與上次的折痕保持平行),得到5條等寬線(如圖(2)所示),連續(xù)對折三次后,可以得到9條等寬線(如圖(3所示),對折四次可以得到17條等寬線,如果對折6次,那么可以得到的等寬線條數是______條.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若α、β為方程2x2﹣5x﹣1=0的兩個實數根,則2α2+3αβ+5β的值為(
A.﹣13
B.12
C.14
D.15

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:若存在過點P的直線l交⊙C于異于點P的A,B兩點,在P,A,B三點中,位于中間的點恰為以另外兩點為端點的線段的中點時,則稱點P為⊙C 的相鄰點,直線l為⊙C關于點P的相鄰線.

(1)當⊙O的半徑為1時,
①分別判斷在點D( , ),E(0,﹣ ),F(4,0)中,是⊙O的相鄰點有;
②請從①中的答案中,任選一個相鄰點,在圖1中做出⊙O關于它的一條相鄰線,并說明你的作圖過程;
③點P在直線y=﹣x+3上,若點P為⊙O的相鄰點,求點P橫坐標的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣ 與x軸,y軸分別交于點M,N,若線段MN上存在⊙C的相鄰點P,直接寫出圓心C的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】星期天小明和同學們去郊外爬山,得到如下數據:

爬坡長度x(m)

40

80

120

160

200

240

爬坡時間t(min)

2

5

9

14

20

30

(1)當爬到120 m時,所用時間是多少?

(2)爬坡速度隨時間是怎樣變化的?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,邊長為1的正△ABO的頂點O在原點,點B在x軸負半軸上,正方形OEDC邊長為2,點C在y軸正半軸上,動點P從點A出發(fā),以每秒1個單位的速度沿著△ABO的邊按逆時針方向運動,動點Q從D點出發(fā),以每秒1個單位的速度沿著正方形OEDC的邊也按逆時針方向運動,點Q比點P遲1秒出發(fā),則點P運動2016秒后,則PQ2的值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點F在ABCD的對角線AC上,過點F,B分別作AB,AC的平行線相交于點E,連接BF,∠ABF=∠FBC+∠FCB.

(1)求證:四邊形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE= ,求AC的長.

查看答案和解析>>

同步練習冊答案