【題目】央視經(jīng)典詠流傳開播以來受到社會廣泛關(guān)注,金昌市某校就學(xué)生喜愛情況進(jìn)行了隨機(jī)調(diào)查,對收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問題:

圖中A表示很喜歡,B表示喜歡C表示一般,D表示不喜歡

1)此次抽樣調(diào)查,共調(diào)查了 名學(xué)生;

2)將圖1中的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)圖2中,C部分所在扇形的圓心角為 度;

4)若該校共有學(xué)生1800人,估計(jì)該校學(xué)生中D類有多少人?

【答案】150;(2)見解析(3216;(4180

【解析】

1)由的人數(shù)除以所占百分比得出調(diào)查的總?cè)藬?shù);

2)用總?cè)藬?shù)減去其他類別的人數(shù)求出部分的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;

3)由乘以部分所占的比例即可得出部分所對應(yīng)的扇形圓心角的度數(shù);

4)由該校總?cè)藬?shù)乘以類所占的比例即可得出答案.

解:(1)此次抽樣調(diào)查,共調(diào)查的學(xué)生數(shù)是:(人

故答案為:50;

2類別的人數(shù)有:(人,補(bǔ)全條形統(tǒng)計(jì)圖如圖:

3)扇形統(tǒng)計(jì)圖中部分所對應(yīng)的扇形圓心角的度數(shù)為

故答案為:216;

4)根據(jù)題意得:

(人

答:估計(jì)該校學(xué)生中類有180人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)ya0a為常數(shù))和y在第一象限內(nèi)的圖象如圖所示,點(diǎn)My的圖象上,MCx軸于點(diǎn)C,交y的圖象于點(diǎn)A;MDy軸于點(diǎn)D,交y的圖象于點(diǎn)B,當(dāng)點(diǎn)My的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①SODBSOCA;②四邊形OAMB的面積不變;③當(dāng)點(diǎn)AMC的中點(diǎn)時(shí),則點(diǎn)BMD的中點(diǎn).其中正確結(jié)論是( 。

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:在平面直角坐標(biāo)系中,若兩點(diǎn)P、Q的坐標(biāo)分別是P(x1,y1)、

Q(x2,y2),則P、Q這兩點(diǎn)間的距離為|PQ|=.如P(1,2),Q(3,4),則|PQ|==2

對于某種幾何圖形給出如下定義:符合一定條件的動(dòng)點(diǎn)形成的圖形,叫做符合這個(gè)條件的點(diǎn)的軌跡.如平面內(nèi)到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)的軌跡是這條線段的垂直平分線.

解決問題:如圖,已知在平面直角坐標(biāo)系xOy中,直線y=kx+y軸于點(diǎn)A,點(diǎn)A關(guān)于x軸的對稱點(diǎn)為點(diǎn)B,過點(diǎn)B作直線l平行于x軸.

(1)到點(diǎn)A的距離等于線段AB長度的點(diǎn)的軌跡是   

(2)若動(dòng)點(diǎn)C(x,y)滿足到直線l的距離等于線段CA的長度,求動(dòng)點(diǎn)C軌跡的函數(shù)表達(dá)式;

問題拓展:(3)若(2)中的動(dòng)點(diǎn)C的軌跡與直線y=kx+交于E、F兩點(diǎn),分別過E、F作直線l的垂線,垂足分別是M、N,求證:①EF是△AMN外接圓的切線;②為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都市為了扎實(shí)推進(jìn)精準(zhǔn)扶貧工作,出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A,B,C,D類貧困戶,為檢查幫扶措施是否落實(shí),隨機(jī)抽取了若干貧困戶進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成如圖兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,回答下列問題:

1)本次抽樣調(diào)查了多少戶貧困戶?

2)成都市共有9100戶貧困戶,請估計(jì)至少得到4種幫扶措施的大約有多少戶?

32020年是精準(zhǔn)扶貧攻關(guān)年,為更好地做好工作,現(xiàn)準(zhǔn)備從D類貧困戶中的甲、乙、丙、丁四戶中隨機(jī)選取兩戶進(jìn)行試點(diǎn)幫扶,請用樹狀圖或列表法求出恰好選中乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四邊形ABCD中,ADBC,∠ABC90°,以AB為直徑的O交邊DCE、F兩點(diǎn),AD1BC5,設(shè)O的半徑長為r

1)聯(lián)結(jié)OF,當(dāng)OFBC時(shí),求O的半徑長;

2)過點(diǎn)OOHEF,垂足為點(diǎn)H,設(shè)OHy,試用r的代數(shù)式表示y;

3)設(shè)點(diǎn)GDC的中點(diǎn),聯(lián)結(jié)OGOD,△ODG是否能成為等腰三角形?如果能,試求出r的值;如不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)EF分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:HE=HF;EC平分DCH線段BF的取值范圍為3≤BF≤4;當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸交于點(diǎn)A,BAB2,與y軸交于點(diǎn)C,對稱軸為直線x2

1)求拋物線的函數(shù)表達(dá)式;

2)設(shè)D為拋物線的頂點(diǎn),連接DA、DB,試判斷ABD的形狀,并說明理由;

3)設(shè)P為對稱軸上一動(dòng)點(diǎn),要使PCPB的值最大,求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,單位長度為1的網(wǎng)格坐標(biāo)系中,一次函數(shù) 與坐標(biāo)軸交于A、B兩點(diǎn),反比例函數(shù)x0)經(jīng)過一次函數(shù)上一點(diǎn)C2,a).

1)求反比例函數(shù)解析式,并用平滑曲線描繪出反比例函數(shù)圖像;

2)依據(jù)圖像直接寫出當(dāng)時(shí)不等式的解集;

3)若反比例函數(shù)與一次函數(shù)交于C、D兩點(diǎn),使用直尺與2B鉛筆構(gòu)造以C、D為頂點(diǎn)的矩形,且使得矩形的面積為10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將曲線c1yx0)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到曲線c2,A為直線yx上一點(diǎn),P為曲線c2上一點(diǎn),PAPO,且PAO的面積為6,直線yx交曲線c1于點(diǎn)B,則OB的長( 。

A.2B.5C.3D.

查看答案和解析>>

同步練習(xí)冊答案