【題目】如圖,已知E、F是□ABCD對(duì)角線(xiàn)AC上的兩點(diǎn),且BE⊥AC,DF⊥AC.
(1)求證:△ABE≌△CDF;
(2)請(qǐng)寫(xiě)出圖中除△ABE≌△CDF外其余兩對(duì)全等三角形(不再添加輔助線(xiàn)).
【答案】(1)見(jiàn)解析;(2)①△ABC≌△CDA ②△BCE≌△DAF
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得到AB=CD,AB∥CD,推出∠BAE=∠FCD,根據(jù)垂直的定義得到∠AEB=∠CFD=90°,根據(jù)AAS即可得到答案;
(2)根據(jù)SSS得到△ABC≌△CDA,根據(jù)SAS得到△BCE≌△DAF.
解:(1)∵四邊形ABCD是平行四邊形
∴AB=CDAB∥CD
∴∠BAE=∠FCD
又∵BE⊥AC DF⊥AC
∴∠AEB=∠CFD=90°
∴△ABE≌△CDF (AAS)
(2)①△ABC≌△CDA②△BCE≌△DAF
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)圖象上一個(gè)點(diǎn)A到x軸的距離為4,點(diǎn)A的橫坐標(biāo)為-2,請(qǐng)回答下列問(wèn)題:
(1)求這個(gè)正比例函數(shù);
(2)這個(gè)正比例函數(shù)圖象經(jīng)過(guò)哪幾個(gè)象限?
(3)這個(gè)正比例函數(shù)的函數(shù)值y是隨著x的增大而增大?還是隨著x的增大而減小?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線(xiàn)DE交AC于點(diǎn)E,交AB延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:BD=CD;
(2)求證:DC2=CEAC;
(3)當(dāng)AC=5,BC=6時(shí),求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點(diǎn)B的坐標(biāo)為(1,0),拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)求拋物線(xiàn)的解析式;
(3)點(diǎn)P是直線(xiàn)AB上方拋物線(xiàn)上的一點(diǎn),過(guò)點(diǎn)P作PD垂直x軸于點(diǎn)D,交線(xiàn)段AB于點(diǎn)E,使PE=DE.
①求點(diǎn)P的坐標(biāo);
②在直線(xiàn)PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,過(guò)點(diǎn)B作BD⊥x軸于點(diǎn)D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點(diǎn)P在直線(xiàn)y=﹣x+2上,且S△ACP=S△BDP,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知頂點(diǎn)為A的拋物線(xiàn)y=a(x-)2-2經(jīng)過(guò)點(diǎn)B(-,2),點(diǎn)C(,2).
(1)求拋物線(xiàn)的表達(dá)式;
(2)如圖1,直線(xiàn)AB與x軸相交于點(diǎn)M,與y軸相交于點(diǎn)E,拋物線(xiàn)與y軸相交于點(diǎn)F,在直線(xiàn)AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;
(3)如圖2,點(diǎn)Q是折線(xiàn)A-B-C上一點(diǎn),過(guò)點(diǎn)Q作QN∥y軸,過(guò)點(diǎn)E作EN∥x軸,直線(xiàn)QN與直線(xiàn)EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN′,若點(diǎn)N′落在x軸上,請(qǐng)直接寫(xiě)出Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,OM是∠AOB的平分線(xiàn),點(diǎn)C在OM上,OC=5,且點(diǎn)C到OA的距離為3.過(guò)點(diǎn)C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結(jié)論:OD+OE=_________;
(1)把圖1中的∠DCE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD與OA不垂直時(shí)(如圖2),上述結(jié)論是否成立?并說(shuō)明理由;
(2)把圖1中的∠DCE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD與OA的反向延長(zhǎng)線(xiàn)相交于點(diǎn)D時(shí):
①請(qǐng)?jiān)趫D3中畫(huà)出圖形;
②上述結(jié)論還成立嗎?若成立,請(qǐng)給出證明;若不成立,請(qǐng)直接寫(xiě)出線(xiàn)段OD、OE之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)交軸于點(diǎn),交軸于點(diǎn),以為邊作正方形,請(qǐng)解決下列問(wèn)題:
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)求直線(xiàn)的解析式;
(3)在直線(xiàn)上是否存在點(diǎn),使為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com