13.若x-y=$\sqrt{2}$-1,xy=$\sqrt{2}$,則代數(shù)式$\frac{1}{2}$(x-1)(y+1)的值為$\sqrt{2}$-1.

分析 首先把所求的式子化成$\frac{1}{2}$(xy+x-y-1)的形式,然后把已知的式子代入求求解即可.

解答 解:原式=$\frac{1}{2}$(xy+x-y-1)=$\frac{1}{2}$($\sqrt{2}$+$\sqrt{2}$-1-1)=$\sqrt{2}$-1.
故答案是:$\sqrt{2}$-1.

點評 本題考查了二次根式的化簡求值,正確對所求的式子進行變形是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:填空題

3.如圖,在矩形ABCD中,AB=3,BC=4,E是BC邊上的一定點,P是CD邊長的一動點(不與點C、D重合),M,N分別是AE、PE的中點,記MN的長度為x,在點P運動過程中,x不斷變化,則x的取值范圍是2<x<$\frac{5}{2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.解不等式組,并在數(shù)軸表示:$\left\{\begin{array}{l}2x-3<6-x\\ 1-4x≤2x-2\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

1.若x>y,下列不等式中不一定成立的是( 。
A.x+2>y+2B.2x>2yC.a-x<a-yD.x2>y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.如圖,以菱形ABCD對角線交點為坐標原點,建立平面直角坐標系,A、B兩點的坐標分別為(-2$\sqrt{5}$,0)、(0,-$\sqrt{5}$),直線DE⊥DC交AC于E,動點P從點A出發(fā),以每秒2個單位的速度沿著A→D→C的路線向終點C勻速運動,設(shè)△PDE的面積為S(S≠0),點P的運動時間為t秒.
(1)求直線DE的解析式;
(2)求S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)當t為何值時,∠EPD+∠DCB=90°?并求出此時直線BP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.若二次根式$\sqrt{2-x}$在實數(shù)范圍內(nèi)有意義,則x的取值范圍是( 。
A.x≥2B.x>2C.x<2D.x≤2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

5.下列方程中,有實數(shù)解的是( 。
A.2x4+1=0B.$\sqrt{x-2}$+3=0C.x2-x+2=0D.$\frac{x}{x-1}$=$\frac{1}{{x}^{2}-1}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

2.若a>b,則下列不等式成立的是( 。
A.a2>b2B.1-a>1-bC.3a-2>3b-2D.a-4>b-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

3.若點(2,m-1)在第四象限,則實數(shù)m的取值范圍是m<1.

查看答案和解析>>

同步練習冊答案