【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積;
(3)直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
【答案】(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.
【解析】
(1)先把B點坐標(biāo)代入代入y=,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)根據(jù)x軸上點的坐標(biāo)特征確定C點坐標(biāo),然后根據(jù)三角形面積公式和△AOB的面積=S△AOC+S△BOC進行計算;
(3)觀察函數(shù)圖象得到當(dāng)﹣4<x<0或x>2時,一次函數(shù)圖象都在反比例函數(shù)圖象下方.
解:∵B(2,﹣4)在反比例函數(shù)y=的圖象上,
∴m=2×(﹣4)=﹣8,
∴反比例函數(shù)解析式為:y=﹣,
把A(﹣4,n)代入y=﹣,
得﹣4n=﹣8,解得n=2,
則A點坐標(biāo)為(﹣4,2).
把A(﹣4,2),B(2,﹣4)分別代入y=kx+b,
得,解得,
∴一次函數(shù)的解析式為y=﹣x﹣2;
(2)∵y=﹣x﹣2,
∴當(dāng)﹣x﹣2=0時,x=﹣2,
∴點C的坐標(biāo)為:(﹣2,0),
△AOB的面積=△AOC的面積+△COB的面積
=×2×2+×2×4
=6;
(3)由圖象可知,當(dāng)﹣4<x<0或x>2時,一次函數(shù)的值小于反比例函數(shù)的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是( )
A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面坐標(biāo)內(nèi),矩形的頂點、、,拋物線經(jīng)過點,,的半徑為1,當(dāng)圓心在拋物線上從點運動到點,則在整個運動過程中,與矩形只有一個公共點的情況共出現(xiàn)______次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形中,于,平分交線段于.
(1)如果,求證:;
(2)一般的情況下,如果,試探究線段、與之間的所滿足的等量關(guān)系(其中,是已知數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在中,,,.點由點出發(fā)沿方向向點勻速運動,同時點由點出發(fā)沿方向向點勻速運動,它們的速度均為.作于,連接,設(shè)運動時間為(),解答下列問題:
(1)設(shè)的面積為,求與之間的函數(shù)關(guān)系式,并求出的最大值;
(2)當(dāng)的值為________________時,是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸相交于A、B兩點,點A的坐標(biāo)為(﹣1,0),點B的坐標(biāo)為(3,0).
(1)求二次函數(shù)的解析式;
(2)求△ABC的面積;
(3)若P是第四象限內(nèi)拋物線上任意一點,PH⊥x軸于點H,與BC交于點M.求線段PM的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c為常數(shù)a≠0)與x軸,y軸分別交于A,B,C三點,已知A(-1,0),B(3,0),C(0,3),動點E從拋物線的頂點點D出發(fā)沿線段DB向終點B運動.
(1)直接寫出拋物線解析式和頂點D的坐標(biāo);
(2)過點E作EF⊥y軸于點F,交拋物線對稱軸左側(cè)的部分于點G,交直線BC于點H,過點H作HP⊥x軸于點P,連接PF,求當(dāng)線段PF最短時G點的坐標(biāo);
(3)在點E運動的同時,另一個動點Q從點B出發(fā)沿直線x=3向上運動,點E的速度為每秒個單位長度,點Q速度均為每秒1個單位長度,當(dāng)點E到達終點B時點Q也隨之停止運動,設(shè)點E的運動時間為t秒,試問存在幾個t值能使△BEQ為等腰三角形?并直接寫出相應(yīng)t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與二次函數(shù)的圖象交于坐標(biāo)軸上的兩點.
(1)求二次函數(shù)的解析式;
(2)點是直線上方拋物線上一點,過點分別作軸軸平行線分別交直線于點和點,設(shè)點的橫坐標(biāo)為,請用含的代數(shù)式表示的周長,并求出當(dāng)的周長取得最大值(不需要求出此最大值)時點的坐標(biāo);
(3)點是直線上一點,點是拋物線上一點,在第二問的周長取得最大值的條件下,請直接寫出使以點為頂點的四邊形是平行四邊形的點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com