【題目】在國(guó)務(wù)院辦公廳發(fā)布《中國(guó)足球發(fā)展改革總體方案》之后,某校為了調(diào)查本校學(xué)生對(duì)足球知識(shí)的了解程度,隨機(jī)抽取了部分學(xué)生進(jìn)行一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給的信息,解答下列問題:
(1)本次接受問卷調(diào)查的學(xué)生總?cè)藬?shù)是 ;
(2)扇形統(tǒng)計(jì)圖中,“了解”所對(duì)應(yīng)扇形的圓心角的度數(shù)為 ,m的值為 ;
(3)若該校共有學(xué)生1500名,請(qǐng)根據(jù)上述調(diào)查結(jié)果估算該校學(xué)生對(duì)足球的了解程度為“基本了解”的人數(shù).
【答案】(1)120;(2)30°,25;(3)375.
【解析】
試題分析:(1)根據(jù)折線統(tǒng)計(jì)圖可得出本次接受問卷調(diào)查的學(xué)生總?cè)藬?shù)是20+60+30+10,再計(jì)算即可;(2)用360°乘以“了解”占的百分比即可求出所對(duì)應(yīng)扇形的圓心角的度數(shù),用基本了解的人數(shù)除以接受問卷調(diào)查的學(xué)生總?cè)藬?shù)即可求出m的值;(3)用該??cè)藬?shù)乘以對(duì)足球的了解程度為“基本了解”的人數(shù)所占的百分比即可.
試題解析:(1)本次接受問卷調(diào)查的學(xué)生總?cè)藬?shù)是20+60+30+10=120(人);
(2)“了解”所對(duì)應(yīng)扇形的圓心角的度數(shù)為:360°×=30°;×100%=25%,則m的值是25;
(3)若該校共有學(xué)生1500名,則該校學(xué)生對(duì)足球的了解程度為“基本了解”的人數(shù)為:1500×25%=375.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年南京市地區(qū)生產(chǎn)總值,連跨4個(gè)千億臺(tái)階、達(dá)到1 171 500 000 000元,成為全國(guó)第11個(gè)突破萬億規(guī)模的城市.用科學(xué)記數(shù)法表示1 171 500 000 000是( 。
A. 0.11715×1013B. 1.1715×1011
C. 1.1715×1012D. 1.1715×1013
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是( )
A.正三角形B.正五邊形C.正六邊形D.正七邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會(huì)為了解該校學(xué)生喜歡球類活動(dòng)的情況,采取抽樣調(diào)查的辦法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制成右邊的兩幅不完整的統(tǒng)計(jì)圖(如圖(1),圖(2),要求每位同學(xué)只能選擇一種自己喜歡的球類;圖中用乒乓球、足球、排球、籃球代表喜歡這四種球類中的某一種球類的學(xué)生人數(shù)),請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:
(1)在這次研究中,一共調(diào)查了多少名學(xué)生?
(2)喜歡排球的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角是多少度?
(3)補(bǔ)全頻數(shù)分布折線統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,AC邊上的中線把三角形的周長(zhǎng)分為24 cm和30 cm的兩部分,求三角形各邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.求證:△ABD≌△CAF;
(2)如圖2,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多項(xiàng)式①16x2-x;②(x-1)2-4(x-1);③(x+1)2-4x(x+1)+4x2;④-4x2-1+4x分解因式后,結(jié)果中含有相同因式的是( )
A. ①和② B. ③和④ C. ①和④ D. ②和③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com