【題目】某校八年級全體同學參加了愛心一日捐捐款活動,隨機抽查了部分同學捐款的情況統(tǒng)計如圖所示

(1)本次共抽查學生   人,并將條形圖補充完整;

(2)捐款金額的眾數(shù)是   ,中位數(shù)是   ;

(3)請估計全校八年級1000名學生,捐款總金額約有多少元?

【答案】(1)50,圖詳見解析;(2)10、12.5;(3)13100.

【解析】

(1)有題意可知,捐款15元的有14人,占捐款總?cè)藬?shù)的28%,由此可得總?cè)藬?shù),將捐款總?cè)藬?shù)減去捐款5、15、20、25元的人數(shù)可得捐10元的人數(shù),再根據(jù)數(shù)據(jù)補齊即可;
(2)從條形統(tǒng)計圖中可知,捐款10元的人數(shù)最多,可知眾數(shù),求出第25、26個數(shù)據(jù)的平均數(shù)可得數(shù)據(jù)的中位數(shù);
(3)將50人的捐款總額除以總?cè)藬?shù)可得平均數(shù)全校八年級1000名學生=捐款總金額

解:(1)本次抽查的學生有:14÷28%=50(人),

則捐款10元的有50﹣9﹣14﹣7﹣4=16(人),補全條形統(tǒng)計圖圖形如下:

故答案為:50;

(2)由條形圖可知,捐款10元人數(shù)最多,故眾數(shù)是10元;

中位數(shù)是=12.5(元),

故答案為:10、12.5.

(3)這組數(shù)據(jù)的平均數(shù)為:(5×9+10×16+15×14+20×7+25×4)=13.1(元),

捐款總金額約有:1000×13.1=13100(元).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DABAC2=ABAD,ADC=90°,EAB的中點.

1)求證:ADC∽△ACB;

2CEAD有怎樣的位置關(guān)系?試說明理由;

3)若AD=4,AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在△ABC中,∠C90°,AD是∠BAC的平分線,DEABEFAC上,BDDF

1)證明:CFEB

2)證明:ABAF+2EB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格內(nèi)有一個三角形ABC

(1)把△ABC沿著軸向右平移5個單位得到△ABC,請你畫出△ABC

(2)請你以O點為位似中心在第一象限內(nèi)畫出△ABC的位似圖形△ABC,使得△ABC與△ABC的位似比為1:2;

(3)請你寫出△ABC三個頂點的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點MN;第二步,連結(jié)MN,分別交AB、AC于點E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,都是等邊三角形,交于點

1)求證:

2)下列結(jié)論中,正確的有________個.

;②;③平分;④平分

3)請選擇(2)中任一正確結(jié)論進行證明.你選的序號是 _________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,點DBC的中點,點EAD上.

1)求證:BE=CE;

2)如圖2,若BE的延長線交AC于點F,且BFAC,∠BAC=45°,原題設(shè)其他條件不變.求證:AB=BF+EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲,乙兩個工程隊分別同時開挖兩條 600 m 長的隧道,所挖遂道長度 ym)與挖掘時間x(天)之間的函數(shù)關(guān)系如圖所示.則下列說法中,錯誤的是(

A.甲隊每天挖 100 m

B.乙隊開挖兩天后,每天挖50

C.甲隊比乙隊提前2天完成任務(wù)

D.時,甲、乙兩隊所挖管道長度相同

查看答案和解析>>

同步練習冊答案