【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線y=上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為( )
A. 5B. 6C. 7D. 8
【答案】C
【解析】
作輔助線,構(gòu)建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據(jù)點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據(jù)三角形面積公式可得結(jié)論.
解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,
設(shè)D(x,),
∵四邊形ABCD是正方形,
∴AD=CD=BC,∠ADC=∠DCB=90°,
易得△AGD≌△DHC≌△CMB(AAS),
∴AG=DH=﹣x﹣1,
∴DG=BM,
∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
解得x=﹣2,
∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
∵AG=DH=﹣1﹣x=1,
∴點E的縱坐標為﹣4,
當(dāng)y=﹣4時,x=﹣,
∴E(﹣,﹣4),
∴EH=2﹣=,
∴CE=CH﹣HE=4﹣=,
∴S△CEB=CEBM=××4=7;
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=3,cos∠B=,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△AB'C,P為線段AB上的動點,以點P為圓心,PA長為半徑作⊙P,當(dāng)⊙P與△A′B′C的一邊所在的直線相切時,⊙P的半徑為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,E、F分別為BC,CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交AD于點M,交BA的延長線于點Q.連接BM,下列結(jié)論中:①AE=BF; ②AE⊥BF;③AQ=;④∠MBF=60°.
正確的結(jié)論是_____(填正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c的圖象與x軸交于A(﹣3,0)、B(1,0)兩點,與y軸交于點C,且OC=OA.
(1)求拋物線解析式;
(2)過直線AC上方的拋物線上一點M作y軸的平行線,與直線AC交于點N.已知M點的橫坐標為m,試用含m的式子表示MN的長及△ACM的面積S,并求當(dāng)MN的長最大時S的值;
(3)如圖2,D(0,﹣2),連接BD,將△OBD繞平面內(nèi)的某點(記為P)逆時針旋轉(zhuǎn)180°得到△O′B′D′,O、B、D的對應(yīng)點分別為O′、B′、D′.若點B′、D′兩點恰好落在拋物線上,求旋轉(zhuǎn)中心點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在宣傳“民族團結(jié)”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中所給信息,解答下列問題:
(1)本次調(diào)查的學(xué)生共有_____人;
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學(xué)生,請估計選擇“唱歌”的學(xué)生有多少人?
(4)七年一班在最喜歡“器樂”的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機選出兩名同學(xué)參加學(xué)校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,分別交AC、BC于點D、E,點F在AC的延長線上,且∠A=2∠CBF.
(1)求證:BF與⊙O相切.
(2)若BC=CF=4,求BF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù))
(1)該函數(shù)的圖像與軸公共點的個數(shù)是( )
A.0 B.1 C.2 D.1或2
(2)求證:不論為何值,該函數(shù)的圖像的頂點都在函數(shù)的圖像上.
(3)當(dāng)時,求該函數(shù)的圖像的頂點縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技公司用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進一步投入資金1520萬元購買生產(chǎn)設(shè)備,進行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價不低于100元,但不超過180元.設(shè)銷售單價為(元),年銷售量為(萬件),年獲利為(萬元),該產(chǎn)品年銷售量(萬件)與產(chǎn)品售價(元)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)表達式,并寫出的取值范圍;
(2)求第一年的年獲利與之間的函數(shù)表達式,并說明投資的第一年,該公司是盈利還是虧損?并求當(dāng)盈利最大或虧損最小時的產(chǎn)品售價;
(3)在(2)的條件下.即在盈利最大或虧損最小時,第二年公司重新確定產(chǎn)品售價,能否使兩年共盈利不低于1370萬元?若能,求出第二年的售價在什么范圍內(nèi);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計表:
“祖沖之獎”的學(xué)生成績統(tǒng)計表:
分數(shù)分 | 80 | 85 | 90 | 95 |
人數(shù)人 | 4 | 2 | 10 | 4 |
根據(jù)圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數(shù)是多少,并將條形統(tǒng)計圖補充完整;
獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是多少分,眾數(shù)是多少分;
在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字“”,“”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com