【題目】甲、乙兩地之間的鐵路交通設有特快列車和普通快車兩種車次,某天一輛普通快車從甲地出發(fā)勻速向乙地行駛,同時另一輛特快列車從乙地出發(fā)勻速向甲地行駛,兩車離甲地的路程S(千米)與行駛時間t(時)之間的函數(shù)關系如圖所示.

(1)甲地到乙地的路成為________千米,普通快車到達乙地所用時間為_______小時.

(2)求特快列車離甲地的路程s與t之間的函數(shù)關系式.

(3)在甲、乙兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛0.5小時與普通快車相遇,求甲地與鐵路橋之間的路程.

【答案】(1)450,7.5;(2)s=﹣120t+450;(3)210千米;

【解析】

本題是一次函數(shù)典型應用,能看懂圖象解決實際問題,兩一次函數(shù)圖象的交點的實際意義.

根據(jù)函數(shù)圖象解決問題;

從圖象可知,函數(shù)圖象經(jīng)過(0,450),(2.5,150)兩點,利用待定系數(shù)法解決問題;

已知特快列車的解析式,求出t=2時,代入解析式,求s的值.

(1)觀察圖象可知,甲地到乙地的路成為450米,普通快車到達乙地所用時間為 =7.5小時,

故答案為450,7.5;

2)設路程st之間的函數(shù)關系式為把(0,450),(2.5,150)代入得到,

解得:

3t=2.50.5=2,s=120×2+450=210

答:甲地與鐵路橋之間的路程為210千米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】紅星公司生產(chǎn)的某種時令商品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的 日銷售量()與時間()的關系如下表:

時間()

1

3

6

10

36

日銷售量()

94

90

84

76

24

未來40天內(nèi),前20天每天的價格y1(/)t時間()的函數(shù)關系式為:y1=t+25(1t20t為整數(shù));后20天每天的價格y2(/)t時間()的函數(shù)關系式為:y2=t+40(21t40t為整數(shù)).下面我們來研究 這種商品的有關問題.

(1)認真分析上表中的數(shù)量關系,利用學過的一次函數(shù)、二次函數(shù) 、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)之間的函數(shù)關系式;

(2)請預測未來40天中那一天的銷售利潤最大,最大日銷售利潤是多少?

(3)在實際銷售的前20天中該公司決定每銷售一件商品就捐贈a元利潤(a4)給希望工程,公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,長方形OABC,點AC分別在y軸,x軸的正半軸上,OA6,OC3.∠DOE45°OD,OE分別交BC,AB于點D,E,且CD2,則點E坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】清明節(jié)假期,小紅和小陽隨爸媽去旅游,他們在景點看到一棵古松樹,小紅驚訝的說:呀!這棵樹真高!有60多米.小陽卻不以為然:“60多米?我看沒有.兩個人爭論不休,爸爸笑著說:別爭了,正好我?guī)Я艘桓比前澹媚銈儗W過的知識量一量、算一算,看誰說的對吧!

小紅和小陽進行了以下測量:如圖所示,小紅和小陽分別在樹的東西兩側(cè)同一地平線上,他們用手平托三角板,保持三角板的一條直角邊與地平面平行,然后前后移動各自位置,使目光沿著三角板的斜邊正好經(jīng)過樹的最高點,這時,測得小紅和小陽之間的距離為135米,他們的眼睛到地面的距離都是1.6米.通過計算說明小紅和小陽誰的說法正確(計算結(jié)果精確到0.1)(參考數(shù)據(jù)≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為(

A.(﹣3,0) B.(﹣6,0) C.,0) D.,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?( 。

A. 1 B. 2 C. 2﹣2 D. 4﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB13,AC5BC邊上的中線AD6,點EAD的延長線上,且EDAD

1)求證:BEAC;

2)求∠CAD的大。

3)求點ABC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D△ABC邊延長線上,點O是邊AC上一個動點,過O作直線EF∥BC,交∠BCA的平分線于點F,交∠BCA的外角平分線于E.當點O在線段AC上移動(不與點A,C重合)時,下列結(jié)論不一定成立的是( 。

A. 2∠ACE=∠BAC+∠B B. EF=2OC C. ∠FCE=90° D. 四邊形AFCE是矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角的兩條高、相交于點,且

1)證明:

2)判斷點是否在的角平分線上,并說明理由.

3)連接,是否平行?為什么?

查看答案和解析>>

同步練習冊答案