【題目】紅星公司生產(chǎn)的某種時令商品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的 日銷售量(件)與時間(天)的關(guān)系如下表:
時間(天) | 1 | 3 | 6 | 10 | 36 | … |
日銷售量(件) | 94 | 90 | 84 | 76 | 24 | … |
未來40天內(nèi),前20天每天的價格y1(元/件)與t時間(天)的函數(shù)關(guān)系式為:y1=t+25(1≤t≤20且t為整數(shù));后20天每天的價格y2(原/件)與t時間(天)的函數(shù)關(guān)系式為:y2=—t+40(21≤t≤40且t為整數(shù)).下面我們來研究 這種商品的有關(guān)問題.
(1)認(rèn)真分析上表中的數(shù)量關(guān)系,利用學(xué)過的一次函數(shù)、二次函數(shù) 、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)之間的函數(shù)關(guān)系式;
(2)請預(yù)測未來40天中那一天的銷售利潤最大,最大日銷售利潤是多少?
(3)在實(shí)際銷售的前20天中該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程,公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求a的取值范圍.
【答案】(1)y=﹣2t+96;(2)當(dāng)t=14時,利潤最大,最大利潤是578元;(3)3≤a<4.
【解析】
(1)通過觀察表格中的數(shù)據(jù)日銷售量與時間t是均勻減少的,所以確定m與t是一次函數(shù)關(guān)系,利用待定系數(shù)法即可求出函數(shù)關(guān)系式;
(2)根據(jù)日銷售量、每天的價格及時間t可以列出銷售利潤W關(guān)于t的二次函數(shù),然后利用二次函數(shù)的性質(zhì)即可求出哪一天的日銷售利潤最大,最大日銷售利潤是多少;
(3)列式表示前20天中每天扣除捐贈后的日銷售利潤,根據(jù)函數(shù)的性質(zhì)求出a的取值范圍 .
(1)設(shè)數(shù)m=kt+b,有,解得
∴m=-2t+96,經(jīng)檢驗(yàn),其他點(diǎn)的坐標(biāo)均適合以上
析式故所求函數(shù)的解析式為m=-2t+96.
(2)設(shè)日銷售利潤為P,
由P=(-2t+96)=t2-88t+1920=(t-44)2-16,
∵21≤t≤40且對稱軸為t=44,
∴函數(shù)P在21≤t≤40上隨t的增大而減小,
∴當(dāng)t=21時,P有最大值為(21-44)2-16=529-16=513(元),
答:來40天中后20天,第2天的日銷售利潤最大,最大日銷售利潤是513元.
(3)P1=(-2t+96)
=-+(14+2a)t+480-96n,
∴對稱軸為t=14+2a,
∵1≤t≤20,
∴14+2a≥20得a≥3時,P1隨t的增大而增大,
又∵a<4,
∴3≤a<4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)隨時間的增加逐步增高達(dá)到峰值,之后血液中酒精含量隨時間的增加逐漸降低.
小明根據(jù)相關(guān)數(shù)據(jù)和學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對血液中酒精含量隨時間變化的規(guī)律進(jìn)行了探究,發(fā)現(xiàn)血液中酒精含量y是時間x的函數(shù),其中y表示血液中酒精含量(毫克/百毫升),x表示飲酒后的時間(小時).
下表記錄了6小時內(nèi)11個時間點(diǎn)血液中酒精含量y(毫克/百毫升)隨飲酒后的時間x(小時)(x>0)的變化情況.
飲酒后的時間x(小時) | … | 1 | 2 | 3 | 4 | 5 | 6 | … | |||||
血液中酒精含量y (毫克/百毫升) | … | 150 | 200 | 150 | 45 | … |
下面是小明的探究過程,請補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,以上表中各對數(shù)值為坐標(biāo)描點(diǎn),圖中已給出部分點(diǎn),請你描出剩余的點(diǎn),畫出血液中酒精含量y隨時間x變化的函數(shù)圖象;
(2)觀察表中數(shù)據(jù)及圖象可發(fā)現(xiàn)此函數(shù)圖象在直線x=兩側(cè)可以用不同的函數(shù)表達(dá)式表示,請你任選其中一部分寫出表達(dá)式;
(3)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完250毫升低度白酒,第二天早上6:30能否駕車去上班?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小方與同學(xué)一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點(diǎn)C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進(jìn)10米到達(dá)點(diǎn)D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.
(1)求AD的長.
(2)求樹長AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,, 點(diǎn)在邊上,點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離相等.
(1)利用尺規(guī)作圖作出點(diǎn),不寫作法但保留作圖痕跡:
(2)連接,若的底邊長為,周長為,求的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn),點(diǎn),把繞點(diǎn)B逆時針旋轉(zhuǎn),得,點(diǎn)A,O旋轉(zhuǎn)后的對應(yīng)點(diǎn)為,,記旋轉(zhuǎn)角為.
(1)如圖,若,求的長;
(2)如圖,若,求點(diǎn)的坐標(biāo);
(3)在的條件下,邊OA上的一點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn)為,當(dāng)取得最小值時,求點(diǎn)的坐標(biāo)直接寫出結(jié)果即可
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】機(jī)器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點(diǎn)A處,再沿正南方向行走14米至點(diǎn)B處,最后沿正東方向行走至點(diǎn)C處,點(diǎn)B、C都在圓O上.
(1)求弦BC的長;
(2)求圓O的半徑長.
(本題參考數(shù)據(jù):sin 67.4° =,cos 67.4°=,tan 67.4° =)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點(diǎn),過 A 作 y 軸的垂線,交函數(shù)的圖象于點(diǎn) C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地之間的鐵路交通設(shè)有特快列車和普通快車兩種車次,某天一輛普通快車從甲地出發(fā)勻速向乙地行駛,同時另一輛特快列車從乙地出發(fā)勻速向甲地行駛,兩車離甲地的路程S(千米)與行駛時間t(時)之間的函數(shù)關(guān)系如圖所示.
(1)甲地到乙地的路成為________千米,普通快車到達(dá)乙地所用時間為_______小時.
(2)求特快列車離甲地的路程s與t之間的函數(shù)關(guān)系式.
(3)在甲、乙兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛0.5小時與普通快車相遇,求甲地與鐵路橋之間的路程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com