【題目】已知菱形ABCD,對角線交點為O,延長CD至E且CD=DE.下列判斷正確個數(shù)是( 。
(1)∠AOB=90°;(2)AE=2OD;(3)∠OAE=90°;(4)∠AEO=∠CEO.
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
由菱形的性質(zhì)可知(1)正確;由平行四邊形ABDE的性質(zhì)可知(2)正確;
由AC⊥BD,可得AC⊥AE,得到(3)正確;由平行線的性質(zhì)推得(4)錯誤;
∵四邊形ABCD是菱形,
∴AC⊥BD,AB=CD,OB=OD,AB∥CD,
∴∠AOB=90°,(1)正確;
∵DE=CD,
∴AB=DE.
∴四邊形ABDE是平行四邊形,
∴AE∥BD,AE=BD=2OD,(2)正確;
∵AC⊥BD,
∴AC⊥AE,
∴∠OAE=90°,(3)正確;
∵AE∥BD,
∴∠AEO=∠DOE,
∵DE=CD>OD,
∴∠DOE>∠CEO,
∴∠AEO>∠CEO,(4)錯誤;
正確的個數(shù)有3個,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地將一批物品勻速運往B地,已知甲出發(fā)0.5h后乙開始出發(fā),如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時間t(h)的關(guān)系,請結(jié)合圖中的信息解決如下問題:
(1)計算甲、乙兩車的速度及a的值;
(2)乙車到達B地后以原速立即返回.
①在圖中畫出乙車在返回過程中離A地的距離S(km)與時間t(h)的函數(shù)圖象;②請問甲車在離B地多遠處與返程中的乙車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點C與點A重合,則下列結(jié)論錯誤的是( )
A. AF=AE B. △ABE≌△AGF C. EF= D. AF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=10°,點P在OB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,動點P在斜邊AB所在的直線上,以PC為直角邊作等腰Rt△PCQ,∠PCQ=90°.探究并解決下列問題:
(1)如圖1,若點P在線段AB上,且AC=1+,PA=,求線段PC的長.
(2)如圖2,若點P在AB的延長線上,猜想PA2、PB2、PC2之間的數(shù)量關(guān)系,并證明.
(3)若動點P滿足,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2-4x+3的圖象與x軸交于A,B兩點(點B在點A的右側(cè)),與y軸交于點C,拋物線的對稱軸與x軸交于點D.
(1)求點A,點B和點D的坐標(biāo);
(2)在y軸上是否存在一點P,使PBC為等腰三角形?若存在,請求出點P的坐標(biāo);
(3)若動點M從點A出發(fā),以每秒1個單位長度的速度沿AB向點B運動,同時另一個動點N從點D出發(fā),以每秒2個單位長度的速度在拋物線的對稱軸上運動,當(dāng)點M到達點B時,點M,N同時停止運動,問點M,N運動到何處時,MNB的面積最大,試求出最大面積.
(備用圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為矩形ABCD對角線AC,BD的交點,AB=9,AD=18,M,N是直線BC上的動點,且MN=3,則OM+ON最小值=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進一批自行車. 男式自行車價格為元/輛,女式自行車價格為元/輛,要求男式自行車比女式單車多輛,設(shè)購進女式自行車輛,購置總費用為元.
(1)求購置總費用(元)與女式單車(輛)之間的函數(shù)關(guān)系式;
(2)若兩種自行車至少需要購置輛,且購置兩種自行車的費用不超過元,該商場有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店出售A、B兩種商品,一月份這兩種商品的利潤都是10萬元,后因某種原因確定增加出售A種商品的數(shù)量,使A種商品每月利潤的增長率都為a,同時減少B種商品的數(shù)量,使B種商品每月利潤減少的百分率也都是a,(1)分別求出二月份出售A和B兩種商品的利潤是多少萬元?(2)求出三月份出售A、B兩種商品的總利潤是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com