【題目】某社區(qū)購買甲、乙兩種樹苗進(jìn)行綠化,購買一棵甲種樹苗的價(jià)錢比購買一棵乙種樹苗的價(jià)錢多 10 元錢,已知購買 20 棵甲種樹苗、30 棵乙種樹苗共需 1 200 元錢.
(1)求購買一棵甲種、一棵乙種樹苗各多少元?
(2)社區(qū)決定購買甲、乙兩種樹苗共 400 棵,總費(fèi)用不超過 10 600 元,那么該社區(qū)最多可以購買多少棵甲種樹苗?
【答案】(1)購買一棵甲種樹苗需30元,購買一棵乙種樹苗需20元;(2)該社區(qū)最多可以購買260棵甲種樹苗.
【解析】
(1)設(shè)出未知數(shù),根據(jù)“一棵甲種樹苗的價(jià)錢比購買一棵乙種樹苗的價(jià)錢多10元錢;購買 20棵甲種樹苗、30棵乙種樹苗共需1200元錢”列出方程組,求解即可;
(2)設(shè)出未知數(shù),根據(jù)兩種樹苗共買400棵且總費(fèi)用不超過10600元列出一元一次不等式,然后解不等式即可.
解:(1)設(shè)購買一棵甲種樹苗需x元,購買一棵乙種樹苗需y元,
由題意得:,
解得:,
答:購買一棵甲種樹苗需30元,購買一棵乙種樹苗需20元;
(2)設(shè)該社區(qū)購買a棵甲種樹苗,則購買(400-a)棵乙種樹苗,
由題意得:30a+20(400-a)≤10600,
解得:x≤260,
答:該社區(qū)最多可以購買260棵甲種樹苗.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別與x軸、y軸交于兩點(diǎn),與直線交于點(diǎn)C(4,2).
(1)點(diǎn)A坐標(biāo)為( , ),B為( , );
(2)在線段上有一點(diǎn)E,過點(diǎn)E作y軸的平行線交直線于點(diǎn)F,設(shè)點(diǎn)E的橫坐標(biāo)為m,當(dāng)m為何值時(shí),四邊形是平行四邊形;
(3)若點(diǎn)P為x軸上一點(diǎn),則在平面直角坐標(biāo)系中是否存在一點(diǎn)Q,使得四個(gè)點(diǎn)能構(gòu)成一個(gè)菱形.若存在,求出所有符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0)、B(2,0)兩點(diǎn),交y軸于點(diǎn)C(0,﹣2),過點(diǎn)A、C畫直線.
(1)求二次函數(shù)的解析式;
(2)若點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E在BC上,CD⊥AB,EF⊥AB,垂足分別為D、F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)A的坐標(biāo)是,點(diǎn)C的縱坐標(biāo)是4,則B點(diǎn)的縱坐標(biāo)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁4名同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選出2名同學(xué)舉行首場比賽.求下列事件的概率:
(1)已確定甲打第一場,再從其余3名同學(xué)中隨機(jī)選取1名,恰好選中乙同學(xué).
(2)隨機(jī)選取2名同學(xué),其中有乙同學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分別是三角形的邊的中點(diǎn),是所在平面上的動(dòng)點(diǎn),連接,點(diǎn)分別是的中點(diǎn),順次連接點(diǎn)
(1)如圖,當(dāng)點(diǎn)在的內(nèi)部時(shí),求證:四邊形是平行四邊形;
(2)若四邊形是菱形,則與應(yīng)滿足怎樣的關(guān)系?若四邊形是矩形,則與應(yīng)滿足怎樣的關(guān)系?(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若兩不相等的實(shí)數(shù)根滿足--=-9,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,∠A=36°,AB的垂直平分線MN交AB于點(diǎn)M,交AC于點(diǎn)D,下列結(jié)論:①△BCD是等腰三角形;②BD是∠ABC的平分線;③DC+BC=AB;④△AMD≌△BCD,正確的是 ( )
A.①②B.②③C.①②③D.①②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com