【題目】邊長(zhǎng)為2的正方形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)D是邊OA的中點(diǎn),連接CD,點(diǎn)E在第一象限,且DE⊥DC,DE=DC.以直線AB為對(duì)稱軸的拋物線過(guò)C,E兩點(diǎn).點(diǎn)M為直線AB上一動(dòng)點(diǎn),點(diǎn)N為拋物線上一動(dòng)點(diǎn),當(dāng)以點(diǎn)M,N,D,E為頂點(diǎn)的四邊形是平行四邊形時(shí)點(diǎn)N的坐標(biāo)為___________.
【答案】(2,)或(0,2)或(2,1)
【解析】
分三種情況討論:N在拋物線頂點(diǎn)處;N在拋物線對(duì)稱軸左側(cè);N在拋物線對(duì)稱軸右側(cè).
解:∵AB為拋物線的對(duì)稱軸,
∴設(shè)拋物線的解析式為,
∵正方形OABC邊長(zhǎng)為2
∴h=2,
∵經(jīng)過(guò)C(0,2)和E兩點(diǎn),
過(guò)點(diǎn)E作EF⊥x軸于點(diǎn)F,如圖1,
∵DE⊥DC,
∴∠CDO+∠EDF=90°,
∵∠CDO+∠OCD=90°,
∴∠OCD=∠EDF,
在△COD和△DFE中
∴△COD≌△DFE(AAS),
∴OD=EF,DF=CO,
∵CO=OA=2,D為OA中點(diǎn),
∴EF=OD=DA=1,DF=OC=2,
∴E(3,1);
∴C(0,2)和E(3,1)兩點(diǎn)代入,
得: ,解得:
∴拋物線的解析式為,
∴點(diǎn)N為拋物線上一動(dòng)點(diǎn),當(dāng)以點(diǎn)M,N,D,E為頂點(diǎn)的四邊形是平行四邊形時(shí)點(diǎn)N的坐標(biāo)可以分三種情況討論:
(1) N在拋物線頂點(diǎn)處時(shí),如圖2所示,
此時(shí),N點(diǎn)就是拋物線的頂點(diǎn)(2,);
(2)當(dāng)N在拋物線對(duì)稱軸左側(cè)時(shí),
過(guò)點(diǎn)C作CM∥DE交拋物線對(duì)稱軸于點(diǎn)M,連接ME,如圖3,
∵CM∥DE,DE⊥CD,
∴CM⊥CD,
∵OC⊥CB,
∴∠OCD=∠BCM,
在△OCD和△BCM中
∴△OCD≌△BCM(ASA),
∴CM=CD=DE,BM=OD=1,
∴CDEM是平行四邊形,
即N點(diǎn)與C占重合,
∴N(0,2),
(3)N在拋物線對(duì)稱軸右側(cè)時(shí),
N點(diǎn)在拋物線對(duì)稱軸右側(cè),MN∥DE,如圖4,
作NG⊥BA于點(diǎn),延長(zhǎng)DM交BN于點(diǎn)H,
∵MNED是平行四邊形,
∴∠MDE=MNE,∠ENH=∠DHB,
∵BN∥DF,
∴∠ADH=∠DHB=∠ENH,
∴∠MNB=∠EDF,
在△BMN和△FED中
∴△BMN≌△FED(AAS),
∴BM=EF=1,
BN=DF=2,
∴M(2,1),
綜上所述,點(diǎn)N的坐標(biāo)為:(2,)或(0,2)或(2,1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=4,AD=3,E是邊AB上一點(diǎn)(不與A. B重合),F是邊BC上一點(diǎn)(不與B. C重合).若△DEF和△BEF是相似三角形,則CF的長(zhǎng)度為( ).
A.B.C.或D.或1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】原來(lái)公園有一個(gè)半徑為 1 m 的苗圃,現(xiàn)在準(zhǔn)備擴(kuò)大面積,設(shè)當(dāng)擴(kuò)大后的半徑為x m時(shí),則增加的環(huán)形的面積為y m 2 .
(1)寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)當(dāng)半徑增大到多少時(shí)面積增大1倍;
(3)試猜測(cè)半徑是多少時(shí),面積是原來(lái)的3、4、5、…倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(0,1)、B(3,3)、C(1,3).
(1) 畫(huà)出△ABC關(guān)于點(diǎn)O的中心對(duì)稱圖形△A1B1C1
(2) 畫(huà)出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的△A2B2C2,直接寫(xiě)出點(diǎn)C2的坐標(biāo)為______.
(3) 若△ABC內(nèi)一點(diǎn)P(m,n)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的對(duì)應(yīng)點(diǎn)為Q,則Q的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線分別交軸于A、C,點(diǎn)P是該直線與反比例函數(shù)在第一象限內(nèi)的一個(gè)交點(diǎn),PB⊥x軸于B,且S△ABP=9.
(1)求證:△AOC∽△ABP;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)R與點(diǎn)P在同一個(gè)反比例函數(shù)的圖象上,且點(diǎn)R在直線PB的右側(cè),作RT⊥x軸于T,當(dāng)△BRT與△AOC相似時(shí),求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個(gè)相等的實(shí)數(shù)根,下列判斷正確的是( 。
A. 1一定不是關(guān)于x的方程x2+bx+a=0的根
B. 0一定不是關(guān)于x的方程x2+bx+a=0的根
C. 1和﹣1都是關(guān)于x的方程x2+bx+a=0的根
D. 1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與軸交于點(diǎn),兩點(diǎn)(在的左側(cè)),直線與軸交于點(diǎn),與軸交于點(diǎn).點(diǎn)是軸上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),交直線于點(diǎn)..
(1)求拋物線與x軸的交點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)的橫坐標(biāo)為,若,求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,矩形ABCD中,AE平分交BC于E,,則下面的結(jié)論:①是等邊三角形;②;③;④,其中正確結(jié)論有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com