【題目】已知:∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD、OE.

(1)如圖①,當(dāng)∠BOC=70°時(shí),求∠DOE的度數(shù);

(2)如圖②,若射線OC在∠AOB內(nèi)部繞O點(diǎn)旋轉(zhuǎn),當(dāng)∠BOC=α時(shí),求∠DOE的度數(shù).

(3)如圖③,當(dāng)射線OC在∠AOB外繞O點(diǎn)旋轉(zhuǎn)時(shí),畫出圖形,直接寫出∠DOE的度數(shù).

【答案】(1)45°;(2)45°;(3)45°135°.

【解析】

(1)由∠BOC的度數(shù)求出∠AOC的度數(shù),利用角平分線定義求出∠COD與∠COE的度數(shù),相加即可求出∠DOE的度數(shù);

(2)DOE度數(shù)不變,理由為:利用角平分線定義得到∠COD為∠AOC的一半,∠COE為∠COB的一半,而∠DOE=COD+COE,即可求出∠DOE度數(shù)為45度;

(3)分兩種情況考慮,同理如圖3,則∠DOE45°;如圖4,則∠DOE135°.

1)如圖,∠AOC=90°﹣BOC=20°,

OD、OE分別平分∠AOC和∠BOC,

∴∠COD=AOC=10°,COE=BOC=35°,

∴∠DOE=COD+COE=45°;

(2)DOE的大小不變,理由是:

DOE=COD+COE=AOC+COB=AOC+COB)=AOB=45°;

(3)DOE的大小發(fā)生變化情況為:如圖③,則∠DOE45°;如圖④,則∠DOE135°,

分兩種情況:如圖3所示,

OD、OE分別平分∠AOC和∠BOC,

∴∠COD=AOC,COE=BOC,

∴∠DOE=COD﹣COE=AOC﹣BOC)=45°;

如圖4所示,∵OD、OE分別平分∠AOC和∠BOC,

∴∠COD=AOC,COE=BOC,

∴∠DOE=COD+COE=AOC+BOC)=×270°=135°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.

(1)求斜坡CD的高度DE;

(2)求大樓AB的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是昌平區(qū)20191月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )

A.1月份中,最高氣溫為10℃,最低氣溫為-2℃

B.10號(hào)至16號(hào)的氣溫中,每天溫差最小為7℃

C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃

D.每天的最高氣溫與最低氣溫都是具有相反意義的量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,梯形ABCD中,AB//CD,且AB=2CD,E,F分別是AB,BC的中點(diǎn).

EFBD相交于點(diǎn)M

1)求證:△EDM∽△FBM;

2)若DB=9,求BM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,弧AB=弧AC,AP是⊙O的切線,交BO的延長線于點(diǎn)P

(1) 求證:AP∥BC

(2) 若tan∠P=,求tan∠PAC的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,以AB為邊向外作等邊三角形ABE,CEDB相交于點(diǎn)F,則∠AFD的度數(shù)____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=24厘米,BC=10厘米,點(diǎn)PA開始沿AB邊以4厘米/秒的速度運(yùn)動(dòng),點(diǎn)QC開始沿CD2厘米/秒的速度移動(dòng),如果點(diǎn)P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)當(dāng)t=2秒時(shí),求P、Q兩點(diǎn)之間的距離;

2t為何值時(shí),線段AQDP互相平分?

3t為何值時(shí),四邊形APQD的面積為矩形面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)DDH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.

(1)求證:DH是圓O的切線;

(2)若,求證:A為EH的中點(diǎn).

(3)若EA=EF=1,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠B=90°,AB=16cm,BC=12cm,P、QABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求PQ的長.

2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案