【題目】如圖,在平面直角坐標系中,菱形OABC的頂點A在x軸正半軸上,頂點C的坐標為(4,3),D是拋物線y=﹣x2+6x上一點,且在x軸上方,則△BCD面積的最大值為 .
【答案】15
【解析】解:∵D是拋物線y=﹣x2+6x上一點, ∴設(shè)D(x,﹣x2+6x),
∵頂點C的坐標為(4,3),
∴OC= =5,
∵四邊形OABC是菱形,
∴BC=OC=5,BC∥x軸,
∴S△BCD= ×5×(﹣x2+6x﹣3)=﹣ (x﹣3)2+15,
∵﹣ <0,
∴S△BCD有最大值,最大值為15,
故答案為15.
設(shè)D(x,﹣x2+6x),根據(jù)勾股定理求得OC,根據(jù)菱形的性質(zhì)得出BC,然后根據(jù)三角形面積公式得出∴S△BCD= ×5×(﹣x2+6x﹣3)=﹣ (x﹣3)2+15,根據(jù)二次函數(shù)的性質(zhì)即可求得最大值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了對學(xué)生進行愛國主義教育,某校組織學(xué)生去看演出,有甲乙兩種票,已知甲乙兩種票的單價比為4:3,單價和為42元.
(1)甲乙兩種票的單價分別是多少元?
(2)學(xué)校計劃拿出不超過750元的資金,讓七年級一班的36名學(xué)生首先觀看,且規(guī)定購買甲種票必須多于15張,有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊的長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的兩條對角線AC,BD互相垂直,A1 , B1 , C1 , D1是四邊形ABCD的中點四邊形,如果AC=8,BD=10,那么四邊形A1B1C1D1的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線CD與EF相交于點O,∠COE=60°,將一直角三角尺AOB的直角頂點與O重合,OA平分∠COE.
(1)求∠BOD的度數(shù);
(2)將三角尺AOB以每秒3°的速度繞點O順時針旋轉(zhuǎn),同時直線EF也以每秒9°的速度繞點O順時針旋轉(zhuǎn),設(shè)運動時間為t秒(0≤t≤40).
①當t為何值時,直線EF平分∠AOB;
②若直線EF平分∠BOD,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列推理不正確的是( )
A.若∠AEB=∠C,則AE∥CD
B.若∠AEB=∠ADE,則AD∥BC
C.若∠C+∠ADC=180°,則AD∥BC
D.若∠AED=∠BAE,則AB∥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠B=30°,AC=6,AD平分∠CAB交BC于D,E為射線AC上的一個動點,EF⊥AD交射線AB于點F,聯(lián)結(jié)DF.
(1)求DB的長;
(2)當點E在線段AC上時,設(shè)AE=x,S△BDF=y,求y關(guān)于x的函數(shù)解析式;(S△BDF表示△BDF的面積)
(3)當AE為何值時,△BDF是等腰三角形.(請直接寫出答案,不必寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,
(1)若∠AOE=40°,求∠BOD的度數(shù);
(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)
(3)從(1)(2)的結(jié)果中能看出∠AOE和∠BOD有何關(guān)系?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com