已知:如圖,在△ABC中,AB=AC,以AC為直徑的⊙O與BC交于點D,DE⊥AB,垂足為E,ED的延長線與AC的延長線交于點F.
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為4,BE=2,求∠F的度數(shù).
(1)證明詳見解析;(2).
【解析】
試題分析:如圖,(1)求證DE是⊙O的切線,可連接OD證明OD⊥ED即可.可由AB=AC、OD=OC得到,進而可得平行線∥;此時易證;(2)連接AD.由AC為⊙O的直徑得,可證Rt∽Rt,進而得到:;由⊙O的半徑為4,可求出.
在Rt中,由,所以;進而得到等邊三角形,所以.
試題解析:
(1)證明:連接OD.
∵AB=AC,
∴.
∵OD=OC,
∴.
∴.
∴∥.
∴.
∵DE⊥AB,
∴.
∴.
∴.
∴DE是⊙O的切線.
(2)解:連接AD.
∵AC為⊙O的直徑,
∴.
又∵DE⊥AB,
∴Rt∽Rt.
∴.
∴.
∵⊙O的半徑為4,
∴AB=AC=8.
∴.
∴.
在Rt中,
∵,
∴.
又∵AB=AC,
∴是等邊三角形.
∴
∴.
考點:1、切線的判定;2、相似三角形的判定與性質;3、三角函數(shù);4、等邊三角形的判定.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:專項題 題型:證明題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com